首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary

The reaction between peroxynitrous acid (hydrogen oxoperoxonitrate) and L-tryptophan is 130 M?1s?1 at 25°C. The pH dependence of the second-order rate constant shows a maximum at pH 5.1. The enthalpy and entropy of activation at pH 7.1 are 10.6 ± 0.4 kcal.mol?1 and -16 ± 2 cal.mol?1K?1 respectively. High-performance liquid chromatography analysis revealed a number of reaction products, two of which were identified as 5- and 6- nitrotryptophan. Hydroxytryptophans were not observed, even at low peroxynitrite concentrations where most of the peroxynitrite decays to nitrate via a first-order process. These results support the hypothesis that isomerization of protonated peroxynitrite to nitrate does not involve formation of the hydroxyl radical.  相似文献   

2.
3.
A convenient method for the synthesis of l-tryptophan analogues is described. The method utilizes E. coli tryptophan synthetase, which catalyses the condensation of indole and l-serine to yield l-tryptophan. It is found that several indole analogues will replace indole as substrate for the enzyme to give the corresponding l-tryptophan analogues in good yield. By using [14C]serine, analogues can be prepared radioactively labeled in the side-chain carbon atoms.  相似文献   

4.
Zhao G  Liu J  Dong K  Zhang F  Zhang H  Liu Q  Jiao Q 《Bioresource technology》2011,102(3):3554-3557
An effective method for production of L-tryptophan from hair acid hydrolysis wastewater (HHW) containing L-serine was developed by recombinant tryptophan synthase. This study provides us with an alternative HHW utilization strategy. Tryptophan synthase could efficiently convert L-serine contained in HHW to L-tryptophan at pH 8.0, 40°C and Tween-80 of 0.04%. The enzyme also showed high tolerance to ammonium chloride, a component in HHW. In a scale up study, L-serine conversion rate reach 95.1% with a final L-tryptophan concentration of 33.2 g l(-1).  相似文献   

5.
Heat shock of lysogens that contain lambda thermosensitive repressor mutants integrated into the dsdC gene results in escape synthesis of d-serine deaminase at a high differential rate.  相似文献   

6.
Cyclic AMP is required for optimal synthesis of D-serine deaminase synthesis from dsdO+ templates and for optimal hyperinducible synthesis from low constitutive dsdO templates both in vitro and in vivo. Neither D-serine, cyclic AMP, nor dsdC activator has an effect on expression of a high constitutive dsdO template. The synthesis of the dsdC activator itself in vitro is independent of cyclic AMP. Guanosine tetraphosphate does not have a significant effect on in vitro D-serine deaminase synthesis from dsdO+ or dsdO templates. A previously described class of dsdO mutants showing partial catabolite sensitivity of constitutive D-serine deaminase synthesis proved to be low dsdO types. They all contain a low constitutive dsdC mutation; the two effects are additive with regard to level of constitutivity, but only that portion of synthesis attributable to the dsdC mutation is cyclic AMP dependent.  相似文献   

7.
We have developed a simple, rapid, and inexpensive method of measuring the concentration of intrinsic free D-serine in tissue samples. This method uses chicken D-serine dehydratase in an enzymatic reaction to produce pyruvate, which is detected spectrophotometrically. Pyridoxal 5'-phosphate (PLP), a cofactor of D-serine dehydratase, increased pyruvate formation by 28%. The presence of Zn(2+) or ethylenediaminetetraacetic acid (EDTA) did not have any effect on pyruvate formation under the present assay conditions. In addition, this method was not affected by the presence of a large excess of L-serine, nor by the presence of tissue extracts, and accurately determined concentrations of 2-30 μM (200 pmol-3 nmol) of D-serine. The entire assay requires only 60 min. With this method, we determined the concentration of D-serine in various silkworm tissues. The results were in agreement with high performance liquid chromatography measurements. We found high concentrations of D-serine in silkworm larvae at day 3 of the fifth instar; specifically, 509 nmol g(-1) wet tissue in the midgut, 434 nmol g(-1) in the ovary, and 353 nmol g(-1) in the testis.  相似文献   

8.
Chemically oxidized, catalytically inactive, pseudomonad l-tryptophan-2,3-dioxygenase (EC 1.13.1.12) can be photoactivated aerobically as well as anaerobically by light of wavelength less than 360 nm. The substrate, l-tryptophan, must be present for photoactivation to proceed. In these studies, a CCl4 filter was used to block light of wavelength less than 265 nm, preventing photolysis of water and the concomitant production of H2O2 (known reductant of tryptophan oxygenase). Photoactivation is not inhibited by superoxide dismutase or formate and is only slightly inhibited by catalase. Nonsubstrate analogues of l-tryptophan, 5-fluorotryptophan (binds to the catalytic site), and α-methyltryptophan (binds to the allosteric site), separately or in concert, do not mediate photoactivation, while another substrate, 6-fluorotryptophan, can. Saturation of the allosteric site with α-methyltryptophan increases the extent of photoactivation in the presence of a nonsaturating level of l-tryptophan, indicating that photoactivation is dependent on the extent of saturation of the catalytic site by l-tryptophan. During the time course of photoactivation, catalytic activity increases faster than does the formation of ferroheme enzyme, indicating that the fully reduced enzyme, (ferroheme)2(Cu+)2, is formed from the fully oxidized enzyme, (ferriheme)2(Cu2+)2, subsequent to photoactivation. A significant amount of the half-reduced, catalytically active enzyme, (ferriheme)2(Cu+)2, exists during the time course of photoactivation. We propose that the mechanism by which electrons enter tryptophan oxygenase is via “electron ejection” [T. R. Hopkins and R. Lumry (1972) Photochem. Photobiol.15, 555–566] from a photoexcited l-tryptophan bound at, the catalvtic site.  相似文献   

9.
10.
D-Serine dehydratase from Escherichia coli is a member of the β-family (fold-type II) of the pyridoxal 5'-phosphate-dependent enzymes, catalyzing the conversion of D-serine to pyruvate and ammonia. The crystal structure of monomeric D-serine dehydratase has been solved to 1.97?-resolution for an orthorhombic data set by molecular replacement. In addition, the structure was refined in a monoclinic data set to 1.55? resolution. The structure of DSD reveals a larger pyridoxal 5'-phosphate-binding domain and a smaller domain. The active site of DSD is very similar to those of the other members of the β-family. Lys118 forms the Schiff base to PLP, the cofactor phosphate group is liganded to a tetraglycine cluster Gly279-Gly283, and the 3-hydroxyl group of PLP is liganded to Asn170 and N1 to Thr424, respectively. In the closed conformation the movement of the small domain blocks the entrance to active site of DSD. The domain movement plays an important role in the formation of the substrate recognition site and the catalysis of the enzyme. Modeling of D-serine into the active site of DSD suggests that the hydroxyl group of D-serine is coordinated to the carboxyl group of Asp238. The carboxyl oxygen of D-serine is coordinated to the hydroxyl group of Ser167 and the amide group of Leu171 (O1), whereas the O2 of the carboxyl group of D-serine is hydrogen-bonded to the hydroxyl group of Ser167 and the amide group of Thr168. A catalytic mechanism very similar to that proposed for L-serine dehydratase is discussed.  相似文献   

11.
12.
YGL196W of Saccharomyces cerevisiae encodes a putative protein that is unidentified but is predicted to have a motif similar to that of the N-terminal domain of the bacterial alanine racemase. In the present study we found that YGL196W encodes a novel D-serine dehydratase, which belongs to a different protein family from that of the known bacterial enzyme. The yeast D-serine dehydratase purified from recombinant Escherichia coli cells depends on pyridoxal 5'-phosphate and zinc, and catalyses the conversion of D-serine into pyruvate and ammonia with the K(m) and k(cat) values of 0.39 mM and 13.1 s(-1) respectively. D-Threonine and beta-Cl-D-alanine also serve as substrates with catalytic efficiencies which are approx. 3 and 2% of D-serine respectively. L-Serine, L-threonine and beta-Cl-L-alanine are inert as substrates. Atomic absorption analysis revealed that the enzyme contains one zinc atom per enzyme monomer. The enzyme activities toward D-serine and D-threonine were decreased by EDTA treatment and recovered by the addition of Zn2+. Little recovery was observed with Mg2+, Mn2+, Ca2+, Ni2+, Cu2+, K+ or Na+. In contrast, the activity towards beta-Cl-D-alanine was retained after EDTA treatment. These results suggest that zinc is involved in the elimination of the hydroxy group of D-serine and D-threonine. D-Serine dehydratase of S. cerevisiae is probably the first example of a eukaryotic D-serine dehydratase and that of a specifically zinc-dependent pyridoxal enzyme as well.  相似文献   

13.
14.
The growth and alkaloid production of a liquid suspension culture of Cinchona pubescens has been studied, particularly with attention to the effect on the alkaloid spectrum of feeding cultures with L-tryptophan. This treatment did not enhance the production of any of the known alkaloids of Cinchona. Above 2mmM, however, the presence of the amino acid was toxic, causing extreme acidification of the medium and cell death. Under these conditions a number of indole and quinoline derivatives accumulated. The principal component of the alkaloid fraction proved to be norharman; indole-3-aldehyde was also isolated. Both these products probably occur by uncharacteristic metabolism of L-tryptophan. Furthermore, evidence for the degradation of endogenous alkaloids was obtained, as 4-hydroxymethylquinoline was also isolated. None of the known quinoline alkaloids of Cinchona, which were present in untreated cells, could be detected after L-tryptophan treatment, even when large amounts of culture were analysed. It is concluded that, in this instance, Cinchona alkaloid production cannot be improved by feeding with a precursor.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid - BA benzyladenine  相似文献   

15.
d-Serine is a physiological co-agonist of the N-methyl-d-aspartate receptor. It regulates excitatory neurotransmission, which is important for higher brain functions in vertebrates. In mammalian brains, d-amino acid oxidase degrades d-serine. However, we have found recently that in chicken brains the oxidase is not expressed and instead a d-serine dehydratase degrades d-serine. The primary structure of the enzyme shows significant similarities to those of metal-activated d-threonine aldolases, which are fold-type III pyridoxal 5′-phosphate (PLP)-dependent enzymes, suggesting that it is a novel class of d-serine dehydratase. In the present study, we characterized the chicken enzyme biochemically and also by x-ray crystallography. The enzyme activity on d-serine decreased 20-fold by EDTA treatment and recovered nearly completely by the addition of Zn2+. None of the reaction products that would be expected from side reactions of the PLP-d-serine Schiff base were detected during the >6000 catalytic cycles of dehydration, indicating high reaction specificity. We have determined the first crystal structure of the d-serine dehydratase at 1.9 Å resolution. In the active site pocket, a zinc ion that coordinates His347 and Cys349 is located near the PLP-Lys45 Schiff base. A theoretical model of the enzyme-d-serine complex suggested that the hydroxyl group of d-serine directly coordinates the zinc ion, and that the ϵ-NH2 group of Lys45 is a short distance from the substrate Cα atom. The α-proton abstraction from d-serine by Lys45 and the elimination of the hydroxyl group seem to occur with the assistance of the zinc ion, resulting in the strict reaction specificity.  相似文献   

16.
D-Serine dehydratase from Escherichia coli is a member of the β-family (fold-type II) of the pyridoxal 5′-phosphate-dependent enzymes, catalyzing the conversion of D-serine to pyruvate and ammonia. The crystal structure of monomeric D-serine dehydratase has been solved to 1.97 Å-resolution for an orthorhombic data set by molecular replacement. In addition, the structure was refined in a monoclinic data set to 1.55 Å resolution. The structure of DSD reveals a larger pyridoxal 5′-phosphate-binding domain and a smaller domain. The active site of DSD is very similar to those of the other members of the β-family. Lys118 forms the Schiff base to PLP, the cofactor phosphate group is liganded to a tetraglycine cluster Gly279-Gly283, and the 3-hydroxyl group of PLP is liganded to Asn170 and N1 to Thr424, respectively. In the closed conformation the movement of the small domain blocks the entrance to active site of DSD. The domain movement plays an important role in the formation of the substrate recognition site and the catalysis of the enzyme. Modeling of D-serine into the active site of DSD suggests that the hydroxyl group of D-serine is coordinated to the carboxyl group of Asp238. The carboxyl oxygen of D-serine is coordinated to the hydroxyl group of Ser167 and the amide group of Leu171 (O1), whereas the O2 of the carboxyl group of D-serine is hydrogen-bonded to the hydroxyl group of Ser167 and the amide group of Thr168. A catalytic mechanism very similar to that proposed for L-serine dehydratase is discussed.  相似文献   

17.
The N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine is important in a number of different processes in the CNS, ranging from synaptic plasticity to disease states, including schizophrenia. D-serine appears to be the major co-agonist acting on retinal ganglion cell NMDA receptors, but the cell type from which it originates and whether its release can be modulated by activity are unknown. In this study, we utilized a mutant mouse line with elevated d-serine to investigate this question. Direct measurements of extracellular D-serine using capillary electrophoresis demonstrate that D-serine can be released from the intact mouse retina through an α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent mechanism. α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-evoked D-serine release persisted in the presence of a cocktail of neural inhibitors but was abolished after administration of a glial toxin. These findings provide the first evidence that extracellular D-serine levels in the retina can be modulated, and that such modulation is contingent upon glial cell activity.  相似文献   

18.
Summary A mutant strain of Escherichia coli K 12 is described, which exhibits thermosensitive regulation of D-serine deaminase synthesis. The mutant is distinct in its physiological properties from i TL and i TSS mutants of the lac systems, although it has elements of similarity with both. A model is presented to explain its properties.  相似文献   

19.
Summary Tryptophanase, which has the very strict stereospecificity to L-tryptophan under ordinary condition, becomes active to D-tryptophan in highly concentrated diammoniumhydrogen phosphate solution. The reaction process of D-tryptophan degradation is studied in terms of kinetics. Diammoniumhydrogen phosphate acts on tryptophanase as activator below 3.1 M, and as noncompetitive inhibitor over it. Additionally, the pathway of the reaction is provided on the basis of kinetic parameters.Abbreviations TPase tryptophanase - L-Trp L-tryptophan - D-Trp D-tryptophan - DAP diammoniumhydrogen phosphate - PLP pyridoxal 5-phosphate  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号