首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragmentation of filamentous fungal hyphae depends on two phenomena: hydrodynamic stresses, which lead to hyphal breakage, and hyphal tensile strength, which resists breakage. The goal of this study was to use turbulent hydrodynamic theory to develop a correlation that allows experimental data of morphology and hydrodynamics to be used to estimate relative (pseudo) tensile strength (sigma(pseudo)) of filamentous fungi. Fed-batch fermentations were conducted with a recombinant strain of Aspergillus oryzae in 80 m(3) fermentors, and measurements were made of both morphological (equivalent hyphal length, L) and hydrodynamic variables (specific power input, epsilon; kinematic viscosity, v). We found that v increased over 100-fold during these fermentations and, hence, Kolmogorov microscale (lambda) also changed significantly with time. In the impeller discharge zone, where hyphal fragmentation is thought to actually take place, lambda was calculated to be 700-3500 microm, which is large compared to the size of typical fungal hyphae (100-300 microm). This result implies that eddies in the viscous subrange are responsible for fragmentation. Applying turbulent theory for this subrange, it was possible to calculate sigma(pseudo)from morphological and hydrodynamic measurements. Pseudo tensile strength was not constant but increased to a maximum during the first half and then decreased during the second half of each fermentation, presumably due to differences in physiological state. When a literature correlation for hyphal fragmentation rate (k(frag)) was modified by adding a term to account for viscosity and tensile strength, the result was better qualitative agreement with morphological data. Taken together, these results imply hyphal tensile strength can change significantly over the course of large-scale, fed-batch fungal fermentations and that existing fragmentation and morphology models may be improved if they accounted for variations in hyphal tensile strength with time.  相似文献   

2.
We previously reported that, although agitation conditions strongly affected mycelial morphology, such changes did not lead to different levels of recombinant protein production in chemostat cultures of Aspergillus oryzae (Amanullah et al., 1999). To extend this finding to another set of operating conditions, fed-batch fermentations of A. oryzae were conducted at biomass concentrations up to 34 g dry cell weight/L and three agitation speeds (525, 675, and 825 rpm) to give specific power inputs between 1 and 5 kWm(-3). Gas blending was used to control the dissolved oxygen level at 50% of air saturation except at the lowest speed where it fell below 40% after 60-65 h. The effects of agitation intensity on growth, mycelial morphology, hyphal tip activity, and recombinant protein (amyloglucosidase) production in fed-batch cultures were investigated. In the batch phase of the fermentations, biomass concentration, and AMG secretion increased with increasing agitation intensity. If in a run, dissolved oxygen fell below approximately 40% because of inadequate oxygen transfer associated with enhanced viscosity, AMG production ceased. As with the chemostat cultures, even though mycelial morphology was significantly affected by changes in agitation intensity, enzyme titers (AGU/L) under conditions of substrate limited growth and controlled dissolved oxygen of >50% did not follow these changes. Although the measurement of active tips within mycelial clumps was not considered, a dependency of the specific AMG productivity (AGU/g biomass/h) on the percentage of extending tips was found, suggesting that protein secretion may be a bottle-neck in this strain during fed-batch fermentations.  相似文献   

3.
A link between vacuolation and fragmentation of Penicillium chrysogenum mycelia in stirred tank submerged fermentations is reported. Quantitative information on vocuolation and morphology was obtained by image analysis. In fed-batch fermentations the coincidence of the events of rapid vacuolation and the fall of the mean total and main hyphal lengths suggests that hyphal fragmentation is not necessarily due to "shear" alone. The physiological state of the hyphae, characterized by the proportions of vaccuoles, was found to have a significant influence on the breakage of mycelial hyphae, It was found that the fragmentation was greater when the hyphae became heavily vacuolated following nutrient limitation in the culture, i.e., during the switch from the rapid growth to the production phase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
The goal in this study was to determine how increased impeller power affects enzyme expression in large-scale (80 m(3)), fed-batch Aspergillus oryzae fermentations. An approximate 50% increase in average impeller power was achieved by increasing impeller diameter approximately 10%, while operating at slightly reduced speed. Measured decreases in terminal (95%) mixing time show increased power improved bulk mixing. However, batches operated at increased power had lower recombinant enzyme productivity. Biomass assays and image analysis tests showed no significant difference between "high power" and control batches, suggesting that slower growth, altered morphology, or increased hyphal fragmentation were not the cause of reduced productivity. Off-line tests on the shear-thinning, highly viscous broth show oxygen limitation occurred after transport through the air-liquid interface and imply the limitation may involve bulk mixing. Specifically, oxygen transfer may be limited to a small zone surrounding each impeller. When this is the case, oxygen mass transfer will be determined by both impeller shear and fluid circulation, which have been characterized with the energy dissipation/circulation function (EDCF). EDCF values during control fermentations were approximately constant at 25 kW m (-3) s(-1), while EDCF values during "high power" batches fell linearly from 40 to 15 kW m (-3) s(-1). The point at which "high power" EDCF values drop below those in control fermentations corresponds almost exactly with the point at which product titer stops increasing. Thus, our findings suggest oxygen mass transfer was less efficient during the latter half of "high power" fermentations because of reductions in impeller speed and subsequent decreases in EDCF values. This observation has clear implications during the scale-up of viscous fungal fermentations, implying that not only is the level of impeller power important, but also relevant is how this power is applied.  相似文献   

5.
Both parallel fermentations with Aspergillus awamori (CBS 115.52) and a literature study on several fungi have been carried out to determine a relation between fungal morphology and agitation intensity. The studied parameters include hyphal length, pellet size, surface structure or so-called hairy length of pellets, and dry mass per-wet-pellet volume at different specific energy dissipation rates. The literature data from different strains, different fermenters, and different cultivation conditions can be summarized to say that the main mean hyphal length is proportional to the specific energy dissipation rate according to a power function with an exponent of -0.25 +/- 0.08. Fermentations with identical inocula showed that pellet size was also a function of the specific energy dissipation rate and proportional to the specific energy dissipation rate to an exponent of -0.16 +/- 0.03. Based on the experimental observations, we propose the following mechanism of pellet damage during submerged cultivation in stirred fermenters. Interaction between mechanical forces and pellets results in the hyphal chip-off from the pellet outer zone instead of the breakup of pellets. By this mechanism, the extension of the hyphae or hair from pellets is restricted so that the size of pellets is related to the specific energy dissipation rate. Hyphae chipped off from pellets contribute free filamentous mycelia and reseed their growth. So the fraction of filamentous mycelial mass in the total biomass is related to the specific energy dissipation rate as well.To describe the surface morphology of pellets, the hyphal length in the outer zone of pellets or the so-called hairy length was measured in this study. A theoretical relation of the hairy length with the specific energy dissipation rate was derived. This relation matched the measured data well. It was found that the porosity of pellets showed an inverse relationship with the specific energy dissipation rate and that the dry biomass per-wet-pellet volume increased with the specific energy dissipation rates. This means that the tensile strength of pellets increased with the increase of specific energy dissipation rate. The assumption of a constant tensile strength, which is often used in literature, is then not valid for the derivation of the relation between pellet size and specific energy dissipation rate. The fraction of free filamentous mycelia in the total biomass appeared to be a function of the specific energy dissipation in stirred bioreactors. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 715-726, 1997.  相似文献   

6.
Two fermentations of the commercially important erythromycin-producing filamentous bacterium Saccharopolyspora erythraea were conducted in defined media. One was glucose-limited and the other nitrate-limited. The viability of the hyphae was determined using the fluorescent stain BacLight (Molecular Probes, Eugene, OR). Also, the force required to strain hyphae to breakage was determined using micromanipulation and a sensitive force transducer. In both fermentations, fragmentation coincided with the appearance of regions in the mycelia with permeabilised membranes (considered nonviable). Under glucose-limitation, hyphal breaking force rose to 1,050 +/- 130 nN at the end of the growth phase and fell to an undetectable value as a result of glucose exhaustion. Under nitrate-limitation, hyphal breaking force fell from 900 +/- 160 nN during the growth phase to 550 +/- 40 nN in the stationary phase. In both cases image analysis showed that the dimensions of mycelia were of the same order, suggesting that the major factor influencing fragmentation was the appearance of nonviable regions (assumed to be weak). The location in which nonviable regions first appear within hyphae could not be determined because of their appearance coinciding with fragmentation.  相似文献   

7.
The effects of pH, agitation speed, and dissolved oxygen tension (DOT), significant in common fungal fermentations, on the production of polygalacturonase (PG) enzyme and their relation to morphology and broth rheology were investigated using Aspergillus sojae in a batch bioreactor. All three factors were effective on the response parameters under study. An uncontrolled pH increased biomass and PG activity by 27% and 38%, respectively, compared to controlled pH (pH 6) with an average pellet size of 1.69 +/- 0.48 mm. pH did not significantly affect the broth rheology but created an impact on the pellet morphology. Similarly, at constant agitation speed the maximum biomass obtained at 500 rpm and at 30 h was 3.27 and 3.67 times more than at 200 and 350 rpm, respectively, with an average pellet size of 1.08 +/- 0.42 mm. The maximum enzyme productivity of 0.149 U mL-1 h-1 was obtained at 200 rpm with an average pellet size of 0.71 +/- 0.35 mm. Non-Newtonian and pseudoplastic broth rheology was observed at 500 rpm agitation speed, broth rheology exhibited dilatant behavior at the lower agitation rate (200 rpm), and at the medium agitation speed (350 rpm) the broth was close to Newtonian. Furthermore, a DOT range of 30-50% was essential for maximum biomass formation, whereas only 10% DOT was required for maximum PG synthesis. Non-Newtonian shear thickening behavior (n > 1.0) was depicted at DOT levels of 10% and 30%, whereas non-Newtonian shear thinning behavior (n < 1.0) was dominant at 50% DOT. The overall fermentation duration (50-70 h) was considerably shorter compared to common fungal fermentations, revealing the economic feasibility of this particular process. As a result this study not only introduced a new strain with a potential of producing a highly commercially significant enzyme but also provided certain parameters significant in the design and mathematical modeling of fungal bioprocesses.  相似文献   

8.
The influence of the agitation conditions on the growth, morphology, vacuolation, and productivity of Penicillium chrysogenum has been examined in 6 L fed-batch fermentations. A standard Rushton turbine, a four-bladed paddle, and a six-bladed pitched blade impeller were compared. Power inputs per unit volume of liquid, P/VL, ranged from 0.35 to 7.4 kW/m3. The same fermentation protocol was used in each fermentation, including holding the dissolved oxygen concentration above 40% air saturation by gas blending. The mean projected area (for all dispersed types, including clumps) and the clump roughness were used to characterize the morphology. Consideration of clumps was vital as these were the predominant morphological form. For a given impeller, the batch-phase specific growth rates and the overall biomass concentrations increased with agitation intensity. Higher fragmentation at higher speeds was assumed to have promoted growth through increased formation of new growing tips. The mean projected area increased during the rapid growth phase followed by a sharp decrease to a relatively constant value dependent on the agitation conditions. The higher the speed, the lower the projected area for a given impeller type. The proportion by volume of hyphal vacuoles and empty regions decreased with speed, possibly due to fragmentation in the vacuolated regions. The specific penicillin production rate was generally higher with lower impeller speed for a given impeller type. The highest value of penicillin production as well as its rate was obtained using the Rushton turbine impeller at the lowest speed. At given P/VL, changes in morphology, specific growth rate, and specific penicillin production rate depended on impeller geometry. The morphological data could be correlated with either tip speed or the "energy dissipation/circulation function," but a reasonable correlation of the specific growth rate and specific production rate was only possible with the latter. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

9.
A methodology for the estimation of biomass for the penicillin fermentation using image analysis is presented. Two regions of hyphae are defined to describe the growth of mycelia during fermentation: (1) the cytoplasmic region, and (2) the degenerated region including large vacuoles. The volume occupied by each of these regions in a fixed volume of sample is estimated from area measurements using image analysis. Areas are converted to volumes by treating the hyphae as solid cylinders with the hyphal diameter as the cylinder diameter. The volumes of the cytoplasmic and degenerated regions are converted into dry weight estimations using hyphal density values available from the literature. The image analysis technique is able to estimate biomass even in the presence of nondissolved solids of a concentration of up to 30 gL(-1). It is shown to estimate successfully concentrations of mycelia from 0.03 to 38 gL(-1). Although the technique has been developed for the penicillin fermentation, it should be applicable to other (nonpellected) fungal fermentations.  相似文献   

10.
The effect of biomass concentration and mycelial morphology on fungal fermentation broth rheological properties has been investigated. In previous work it had been shown that commonly used rheological parameters, such as the power law consistency and flow behavior indices, could be correlated successfully with the broth biomass concentration and clump morphological parameters of roughness and compactness. More recent work on a broader range of data showed a correlation between roughness and compactness; consequently, it was not correct to use both of these morphological variables simultaneously in rheological parameter correlations. Furthermore, earlier correlations were only made using clump morphological parameters, as clumps were found to be around 90% of the biomass in batch fermentations. In the present work it was found that the percentage of clumps fell to around 30% to 40% of a sample during the later stages of fed-batch fermentations. No clear relationship between the flow behavior index and biomass concentration was found, at least for those phases of the fermentation in which the viscosities were high enough for the rheology to be characterized by a disk turbine rheometer. The mean value of the flow behavior index was found to be 0.35 +/- 0.1 (standard deviation) throughout both batch and fed-batch fermentations, although some significant deviations from this value were observed early and very late in the fermentations. Correlations for the consistency index, measured using a disk turbine rheometer, were based on the biomass concentration and the mycelial size (represented by the mean projected area or the mean maximum dimension of all the mycelia). These correlations were reasonably successful for both fed-batch and batch fermentations. The correlation using the mean maximum dimension was preferred to that using the mean projected area, as the former is independent of magnification. The proposed correlation is: where K is the consistency index (Pa. s(n>)), C(m) is the biomass concentration as dry cell weight (g L(-1)), and D is the mean maximum dimension (microm). It should be noted that small changes in the exponent on the biomass concentration (alpha) may dramatically affect any predictions. Consequently, caution in the use of this correlation (and that based on mean projected area) is advocated, although its accuracy may be suitable for operational or design purposes.  相似文献   

11.
Because little is known about filamentous fungal tensile strength, it is assumed to be constant in many models. A method involving off-line fragmentation and image analysis is used now to measure relative tensile strength of Aspergillus oryzae hyphae. During the course of shake-flask and fed-batch cultures, hyphal tensile strength increases during growth then decreases. Hyphal tensile strength can change up to 3-fold over time.  相似文献   

12.
Generalizing results from fungal fermentations is difficult due to their high sensitivity toward slight variation in starting conditions, poor reproducibility, and difference in strains. In this study a mathematical model is presented in which oxygen transfer, agitation intensity, dissolved oxygen tension, pellet size, formation of mycelia, the fraction of mycelia in the total biomass, carbohydrate source consumption, and biomass growth are taken into account. Two parameters were estimated from simulation, whereas all others are based on measurements or were taken from literature. Experimental data are obtained from the fermentations in both 2 L and 100 L fermentors at various conditions. Comparison of the simulation with experiments shows that the model can fairly well describe the time course of fungal growth (such as biomass and carbohydrate source concentrations) and fungal morphology (such as pellet size and the fraction of pellets in the total biomass). The model predicts that a stronger agitation intensity leads to a smaller pellet size and a lower fraction of pellets in the total biomass. At the same agitation intensity, pellet size is hardly affected by the dissolved oxygen tension, whereas the fraction of mycelia decreases slightly with an increase of the dissolved oxygen tension in the bulk. All of these are in line with observations at the corresponding conditions.  相似文献   

13.
Streptomyces clavuligerus ATCC 20764 was grown from spore-inocuia on a glycerol, malt extract, bacteriological peptone medium in 5-L batch fermentations at 490, 990, and 1300 rpm. Dry cell weights, clavulanic acid production, and the morphological parameters main hyphal length, total hyphal length, number of tips, and hyphal growth unit were measured. Growth and productivity were hardly dependent on stirrer speed. After early growth fragmentation of long, highly branched mycelia to shorter, less branched fragments occurred. This was followed by regrowth and, at 1300 rpm, a second fragmentation phase. The effect of increasing stirrer speed was to accelerate the initial fragmentation phase. It was clearly possible to obtain the same biomass concentration and clavulanic acid liter, with different morphologies depending on stirrer speed. This shows that for this fermentation at least there is no direct link between morphology and productivity and, hence, that it might be possible to manipulate them independently to improve fermentor performance.  相似文献   

14.
High-throughput (HT) miniature bioreactor (MBR) systems are becoming increasingly important to rapidly perform clonal selection, strain improvement screening, and culture media and process optimization. This study documents the initial assessment of a 24-well plate MBR system, Micro (micro)-24, for Saccharomyces cerevisiae, Escherichia coli, and Pichia pastoris cultivations. MBR batch cultivations for S. cerevisiae demonstrated comparable growth to a 20-L stirred tank bioreactor fermentation by off-line metabolite and biomass analyses. High inter-well reproducibility was observed for process parameters such as on-line temperature, pH and dissolved oxygen. E. coli and P. pastoris strains were also tested in this MBR system under conditions of rapidly increasing oxygen uptake rates (OUR) and at high cell densities, thus requiring the utilization of gas blending for dissolved oxygen and pH control. The E. coli batch fermentations challenged the dissolved oxygen and pH control loop as demonstrated by process excursions below the control set-point during the exponential growth phase on dextrose. For P. pastoris fermentations, the micro-24 was capable of controlling dissolved oxygen, pH, and temperature under batch and fed-batch conditions with subsequent substrate shot feeds and supported biomass levels of 278 g/L wet cell weight (wcw). The average oxygen mass transfer coefficient per non-sparged well were measured at 32.6 +/- 2.4, 46.5 +/- 4.6, 51.6 +/- 3.7, and 56.1 +/- 1.6 h(-1) at the operating conditions of 500, 600, 700, and 800 rpm shaking speed, respectively. The mixing times measured for the agitation settings 500 and 800 rpm were below 5 and 1 s, respectively.  相似文献   

15.
A sterile mycelium PS IV, an ascomycete capable of establishing ericoid mycorrhizas, was used to investigate how zinc ions affect the cellular mechanisms of fungal growth. A significant reduction of the fungal biomass was observed in the presence of millimolar zinc concentrations; this mirrored conspicuous changes in hyphal morphology which led to apical swellings and increased branching in the subapical parts. Specific probes for fluorescence and electron microscopy localised chitin, the main cell wall polysaccharide, on the inner part of the fungal wall and on septa in control specimens. In Zn-treated mycelium, hyphal walls were thicker and a more intense chitin labelling was detected on the transverse walls. A quantitative assay showed a significant increase in the amount of chitin in metal-treated hyphae.  相似文献   

16.
Currently, little is known about the mechanical properties of filamentous fungal hyphae. To study this topic, atomic force microscopy (AFM) was used to measure cell wall mechanical properties of the model fungus Aspergillus nidulans. Wild type and a mutant strain (deltacsmA), lacking one of the chitin synthase genes, were grown in shake flasks. Hyphae were immobilized on polylysine-coated coverslips and AFM force--displacement curves were collected. When grown in complete medium, wild-type hyphae had a cell wall spring constant of 0.29 +/- 0.02 N/m. When wild-type and mutant hyphae were grown in the same medium with added KCl (0.6 M), hyphae were significantly less rigid with spring constants of 0.17 +/- 0.01 and 0.18 +/- 0.02 N/m, respectively. Electron microscopy was used to measure the cell wall thickness and hyphal radius. By use of finite element analysis (FEMLAB v 3.0, Burlington, MA) to simulate AFM indentation, the elastic modulus of wild-type hyphae grown in complete medium was determined to be 110 +/- 10 MPa. This decreased to 64 +/- 4 MPa for hyphae grown in 0.6 M KCl, implying growth medium osmotic conditions have significant effects on cell wall elasticity. Mutant hyphae grown in KCl-supplemented medium were found to have an elastic modulus of 67 +/- 6 MPa. These values are comparable with other microbial systems (e.g., yeast and bacteria). It was also found that under these growth conditions axial variation in elastic modulus along fungal hyphae was small. To determine the relationship between composition and mechanical properties, cell wall composition was measured by anion-exchange liquid chromatography and pulsed electrochemical detection. Results show similar composition between wild-type and mutant strains. Together, these data imply differences in mechanical properties may be dependent on varying molecular structure of hyphal cell walls as opposed to wall composition.  相似文献   

17.
For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors.  相似文献   

18.
A morphologically structured model is proposed to describe trends in biomass growth, substrate consumption, and antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis. Filamentous biomass is structured into three morphological compartments (apical, subapical, and hyphal), and the production of retamycin, a secondary metabolite, is assumed to take place in the subapical cell compartment. Model accounts for the effect of glucose as well as complex nitrogen source on both the biomass growth and retamycin production. Laboratory data from bench-scale batch and fed-batch fermentations were used to estimate some model parameters by nonlinear regression. The predictive capability of the model was then tested for additional fed-batch and continuous experiments not used in the previous fitting procedure. The model predictions show fair agreement to the experimental data. The proposed model can be useful for further studies on process optimization and control.  相似文献   

19.
20.
Rheology of filamentous fermentations   总被引:1,自引:0,他引:1  
The performance of a bioreactor containing a filamentous fermentation broth is greatly influenced by the rheological properties of the broth. These properties are determined mainly by the concentration of biomass, its growth rate and morphology. Included in the morphology are such factors as the geometry of hyphae (length, diameter, branching frequency), hyphal flexibility and hyphal-hyphal interactions, which can all be affected by the operational design of the reactor. Thus, correlations describing viscosity as a function of biomass only are of limited value. A better understanding of the relations between morphology and rheology may be achieved by a combination of rheological and morphological studies.Rheological properties are normally determined using off-line measurements in-spite of associated problems with sample treatment influencing the results. Equipment for dynamic, on-line, measurement of morphology and rheology is available, but little used in filamentous fermentations. Controlling the rheological properties of mycelial fermentations may be difficult because of the great number of factors influencing mycelial development and/or hyphal-hyphal interactions.Polymer solutions are often used to simulate flow behaviour of filamentous fermentations and scale-up and mass transfer considerations are based on these studies. Although much information has been gained this way, the predictions developed do not include the effect of an active biomass on the mass transfer and flow properties of the culture. It is important to carry out studies on the non-homogeneous fermentation fluids, and develop correlations based on these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号