首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
痘苗病毒/T7RNA聚合酶这一瞬时表达系统由于具有很多优于其他表达系统的特点而被广泛地应用于表达外源蛋白.TB-Chen株轮状病毒的VP6 DNA编码片段插入到原核质粒pETL的噬菌体T7启动子和终止子之间,获得重组表达质粒pET-VP6.构建好的重组表达质粒pET-VP6通过脂质体转染到真核细胞MA104中,用携带噬...  相似文献   

2.
本文发现,痘苗病毒DNA一些巳知的启动子序列和一些功能尚不清楚的DNA片段,可以在大肠杆菌中起始氯霉素乙酰基转移酶(Chloramphenicol Acetyltrsnsferase,简称CAT)基因的转录和表达,使转化细菌呈现氯霉素抗性表型,这一结果证明,痘苗病毒的启动子可以被大肠杆菌的RNA多聚酶所识别并有效工作。同时发现不同启动子具有不同的强度,利用大肠杆菌质粒分离和检测痘苗病毒的启动子序列,不仅可以研究痘苗病毒基因组的表达调节特点,而且也为组建痘苗病毒表达载体提供了一个快速、简便可靠的方法。  相似文献   

3.
A cDNA copy of the gene coding for the major outer neutralizing protein (VP7) of simian 11 rotavirus was incorporated into the vaccinia virus genome under the control of the vaccinia promoter (molecular weight, 7,500). A deletion mutant of this gene which codes for a secreted form of VP7 when expressed under the control of the simian virus 40 late promoter (M. S. Poruschynsky, C. Tyndall, G. W. Both, F. Sato, A. R. Bellamy, and P. H. Atkinson, J. Cell Biol. 101:2199-2209, 1985) was also inserted. Each recombinant vaccinia virus directed the synthesis of a rotavirus protein in infected cells, and the product encoded by the mutated gene was secreted. Rabbits immunized with the two types of recombinant vaccinia virus generated antibodies that were able both to recognize simian 11 rotavirus in an enzyme-linked immunosorbent assay and to neutralize the virus in a plaque-reduction test. Antibodies induced by the recombinant vaccinia viruses expressing either form of VP7 were serotype specific.  相似文献   

4.
We have previously reported that the NS3 helicase (N3H) and NS5B-to-3′X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3′ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3′X region. We next analyzed the 3′ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3′UTR were required for J6CF replication in cultured cells.  相似文献   

5.
In vitro analysis of the catalytic DNA polymerase encoded by vaccinia virus has demonstrated that it is innately distributive, catalyzing the addition of <10 nucleotides per primer-template binding event in the presence of 8 mM MgCl(2) or 40 mM NaCl (W. F. McDonald and P. Traktman, J. Biol. Chem. 269:31190-31197, 1994). In contrast, cytoplasmic extracts isolated from vaccinia virus-infected cells contain a highly processive form of DNA polymerase, able to catalyze the replication of a 7-kb template per binding event under similar conditions. To study this holoenzyme, we were interested in purifying and characterizing the vaccinia virus processivity factor (VPF). Our previous studies indicated that VPF is expressed early after infection and has a native molecular mass of approximately 48 kDa (W. F. McDonald, N. Klemperer, and P. Traktman, Virology 234:168-175, 1997). Using these criteria, we established a six-step chromatographic purification procedure, in which a prominent approximately 45-kDa band was found to copurify with processive polymerase activity. This species was identified as the product of the A20 gene. By use of recombinant viruses that direct the overexpression of A20 and/or the DNA polymerase, we verified the physical interaction between the two proteins in coimmunoprecipitation experiments. We also demonstrated that simultaneous overexpression of A20 and the DNA polymerase leads to a specific and robust increase in levels of processive polymerase activity. Taken together, we conclude that the A20 gene encodes a component of the processive DNA polymerase complex. Genetic data that further support this conclusion are presented in the accompanying report, which documents that temperature-sensitive mutants with lesions in the A20 gene have a DNA(-) phenotype that correlates with a deficit in processive polymerase activity (A. Punjabi et al, J. Virol. 75:12308-12318, 2001).  相似文献   

6.
Sequence analysis of the vaccinia virus strain Western Reserve genome revealed the presence of an open reading frame (ORF), SalL4R, which has the potential to encode a transmembrane glycoprotein with homology to C-type animal lectins (G. L. Smith, Y. S. Chan, and S. T. Howard, J. Gen. Virol. 72:1349-1376, 1991). Here we show that the SalL4R gene is transcribed late during infection from a TAAATG motif at the beginning of the ORF. Antisera raised against a TrpE-SalL4R fusion protein identified three glycoprotein species of Mr 22,000 to 24,000 in infected cells. Immunogold electron microscopy demonstrated that SalL4R protein is present in purified extracellular enveloped virus particles but not in intracellular naked virus (INV). A mutant virus was constructed by placing a copy of the SalL4R ORF downstream of an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible vaccinia virus promoter within the thymidine kinase locus and subsequently deleting the endogenous SalL4R gene. The growth kinetics of this virus demonstrated that SalL4R was nonessential for the production of infectious INV but was required for virus dissemination. Consistent with this finding, the formation of wild-type-size plaques by this mutant was dependent on the presence of IPTG. Electron microscopy showed that without SalL4R expression, the inability of the virus to spread is due to a lack of envelopment of INV virions by Golgi-derived membrane, a morphogenic event required for virus egress.  相似文献   

7.
木文从单纯疱疹病毒Ⅰ型(HSV-1)基因组EcoRI H片段中分离出含有糖蛋白D(gD)基因的2.5kb DWA片段,插入带有痘苗病毒天坛株TK基因区段的pJC—2质粒p7.5k启动子的下游,转染TK~-143细胞,获得带有HSV-1 gD基因的重组痘苗病毒。采用HSV-1 gD单克隆抗体免疫胶体金技术进行电镜观察表明,重组痘苗病毒感染的细胞内有特异性HSV-1 gD抗原.重组病毒免疫家兔后6周可产生明显的HSV-1中和抗体。  相似文献   

8.
9.
The equine herpesvirus 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was cloned into the hemagglutinin (HA) locus of vaccinia virus (Copenhagen strain). Expression of the gp13 gene was driven by the early/late vaccinia virus H6 promoter. Metabolically radiolabeled polypeptides of approximately 47 and 44 kilodaltons and 90 kilodaltons (glycosylated form) were precipitated with both polyclonal and gp13-specific monoclonal antibodies. Presentation of gp13 on the cytoplasmic membrane of cells infected with the recombinant gp13 vaccinia virus was demonstrated by immunofluorescence of unfixed cells. Inoculation of the recombinant gp13 vaccinia virus into guinea pigs induced neutralizing antibodies to both EHV-1 and vaccinia virus. Hamsters vaccinated with the recombinant gp13 vaccinia virus survived a lethal challenge with the hamster-adapted Kentucky strain of EHV-1. These results indicate that expression in vaccinia virus vectors of EHV-1 gp13, the glycoprotein homolog of herpes simplex virus gC-1 and gC-2, pseudorabies virus gIII, and the varicella-zoster virus gpV may provide useful vaccine candidates for equine herpesvirus infections.  相似文献   

10.
Although the vaccinia virus DNA polymerase is inherently distributive, a highly processive form of the enzyme exists within the cytoplasm of infected cells (W. F. McDonald, N. Klemperer, and P. Traktman, Virology 234:168-175, 1997). In the accompanying report we outline the purification of the 49-kDa A20 protein as a stoichiometric component of the processive polymerase complex (N. Klemperer, W. McDonald, K. Boyle, B. Unger, and P. Traktman, J. Virol. 75:12298-12307, 2001). To complement this biochemical analysis, we undertook a genetic approach to the analysis of the structure and function of the A20 protein. Here we report the application of clustered charge-to-alanine mutagenesis of the A20 gene. Eight mutant viruses containing altered A20 alleles were isolated using this approach; two of these, tsA20-6 and tsA20-ER5, have tight temperature-sensitive phenotypes. At the nonpermissive temperature, neither virus forms macroscopic plaques and the yield of infectious virus is <1% of that obtained at the permissive temperature. Both viruses show a profound defect in the accumulation of viral DNA at the nonpermissive temperature, although both the A20 protein and DNA polymerase accumulate to wild-type levels. Cytoplasmic extracts prepared from cells infected with the tsA20 viruses show a defect in processive polymerase activity; they are unable to direct the formation of RFII product using a singly primed M13 template. In sum, these data indicate that the A20 protein plays an essential role in the viral life cycle and that viruses with A20 lesions exhibit a DNA(-) phenotype that is correlated with a loss in processive polymerase activity as assayed in vitro. The vaccinia virus A20 protein can, therefore, be considered a new member of the family of proteins (E9, B1, D4, and D5) with essential roles in vaccinia virus DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号