首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response of Plant-Colonizing Pseudomonads to Hydrogen Peroxide   总被引:5,自引:2,他引:5       下载免费PDF全文
Colonization of plant root surfaces by Pseudomonas putida may require mechanisms that protect this bacterium against superoxide anion and hydrogen peroxide produced by the root. Catalase and superoxide dismutase may be important in this bacterial defense system. Stationary-phase cells of P. putida were not killed by hydrogen peroxide (H2O2) at concentrations up to 10 mM, and extracts from these cells possessed three isozymic bands (A, B, and C) of catalase activity in native polyacrylamide gel electrophoresis. Logarithmic-phase cells exposed directly to hydrogen peroxide concentrations above 1 mM were killed. Extracts of logarithmic-phase cells displayed only band A catalase activity. Protection against 5 mM H2O2 was apparent after previous exposure of the logarithmic-phase cells to nonlethal concentrations (30 to 300 μM) of H2O2. Extracts of these protected cells possessed enhanced catalase activity of band A and small amounts of bands B and C. A single form of superoxide dismutase and isoforms of catalase were apparent in extracts from a foliar intercellular pathogen, Pseudomonas syringae pv. phaseolicola. The mobilities of these P. syringae enzymes were distinct from those of enzymes in P. putida extracts.  相似文献   

2.
Conclusions and summary 1. Oxygen has two polarographic waves of equal height (h.w.p. –0.05 V and –1.07 V), which disturb the direct polarographic determination of H2O2.2. In determining H2O2 it is possible to eliminate this disturbance by reducing the total height of the waves by 2 × the height of the first O2 wave.3. In a decomposing H2O2 solution the O2 concentration exceeds more than 5 × the normal O2 concentration in an aqueous solution.4. In a decomposing H2O2 solution the H2O2 concentration at each moment can only be determined by taking into account the O2 concentration at that moment.5. Determination without this correction presents too small a catalase activity and may even result in characterising catalase positive bacteria as catalase negative.6. It is possible to demonstrate the H2O2 production of catalase negative bacteria by the polarographic method.  相似文献   

3.
A comparative kinetic study of extracellular catalases produced by Penicillium piceum F-648 and their variants adapted to H2O2 was performed in culture liquid filtrates. The specific activity of catalase, the maximum rate of catalase-induced H2O2 degradation (V max), V max/K M ratio, and the catalase inactivation rate constant in the enzymatic reaction (k in, s–1) were estimated in phosphate buffer (pH 7.4) at 30°C. The effective constant representing the rate of catalase thermal inactivation (k in *, s–1) was determined at 45°C. In all samples, the specific activity and K M for catalase were maximum at a protein concentration in culture liquid filtrates of (2.5–3.5) × 10–4 mg/ml. The effective constants describing the rate of H2O2 degradation (k, s–1) were similar to that observed in the initial culture. These values reflected a twofold decrease in catalase activity in culture liquid filtrates. We hypothesized that culture liquid filtrates contain two isoforms of extracellular catalase characterized by different activities and affinities for H2O2. Catalases from variants 5 and 3 with high and low affinities for H2O2, respectively, had a greater operational stability than the enzyme from the initial culture. The method of adaptive selection for H2O2 can be used to obtain fungal variants producing extracellular catalases with improved properties.  相似文献   

4.
Summary The oxidative response to phagocytosis by chicken polymorphonuclear leucocytes was investigated as compared to guinea pig polymorphonuclear leucocytes.The polymorphs from both species respond to phagocytosis with an increased oxygen consumption, an increased generation of O2 and H2O2, and an increased oxidation of glucose through the hexose monophosphate shunt. The rate of oxygen consumption, and generation of O2 and H2O2 by phagocytosing chicken polymorphonuclear leucocytes is considerably lower than with phagocytosing guinea pig polymorphonuclear leucocytes. By contrast, the extent of hexose monophosphate shunt stimulation in chicken polymorphs is comparable to that of guinea pig polymorphs. Evidence is presented suggesting that H2O2 is preferentially degraded in chicken cells through the glutathione cycle, whereas catalase and myeloperoxidase are the two main H2O2 degrading enzymes in guinea pig cells.The 20,000 g fraction of the postnuclear supernatant of chicken polymorphs contains a cyanide-insensitive NADPH oxidizing activity which is stimulated during phagocytosis. Similar properties for the NADPH oxidizing activity of guinea pig polymorphs have been previously reported.It is concluded that the metabolic burst of phagocytosing chicken polymorphonuclear leucocytes is qualitatively similar to that of guinea pig polymorphonuclear leucocytes, but the latter cells are more active in all the biochemical parameters that have been measured. The difference in the H2O2 degradation pathways between the two species is accounted for by the lack of myeloperoxidase and catalase in chicken polymorphs.  相似文献   

5.
We induced an oxidative stress by means of exogenous hydrogen peroxide in two wheat genotypes, C 306 (tolerant to water stress) and Hira (susceptible to water stress), and investigated oxidative injury and changes in antioxidant enzymes activity. H2O2 treatment caused chlorophyll degradation, lipid peroxidation, decreased membrane stability and activity of nitrate reductase. Hydrogen peroxide increased the activity of antioxidant enzymes, glutathione reductase and catalase. These effects increased with increasing H2O2 concentrations. However, no change was observed in the activity of superoxide dismutase and proline accumulation.  相似文献   

6.
Our previous results indicate that during protoplast isolation an oxidative burst occurs [A.K. Papadakis and KA Roubelakis-Angelakis (1999) Plant Physiol 127:197–205] and that suppression of totipotency is correlated with reduced antioxidant activity and low redox state [A.K. Papadakis et al. (2001b) Plant Physiol 126:434–444]. Polyamines are known to affect cell development and to act as antioxidants. Polyamines applied during isolation of tobacco (Nicotiana tabacum L.) protoplasts reduced the accumulation of O2· but not that of H2O2. This antioxidant effect is probably due to the inhibition of microsomal membrane NADPH oxidase, which occurred in a concentration-dependent manner, with spermine exerting the highest inhibitory effect. However, during protoplast culture, polyamine oxidase activity increased severalfold in spermidine- and spermine-treated protoplasts, concomitant with H2O2 titers. A cell death program was executed in untreated protoplasts, as documented by membrane malfunction, induced DNase activity, DNA fragmentation and a positive TUNEL reaction. Protoplast cell death was prevented in protoplasts treated with putrescine, but not by treatment with spermidine or spermine, which rather had the opposite effect. The data presented suggest that PAs may be implicated in the expression of plant protoplast totipotency.  相似文献   

7.
Several neurodegenerative diseases and brain injury involve reactive oxygen species and implicate oxidative stress in disease mechanisms. Hydrogen peroxide (H2O2) formation due to mitochondrial superoxide leakage perpetuates oxidative stress in neuronal injury. Catalase, an H2O2-degrading enzyme, thus remains an important antioxidant therapy target. However, catalase therapy is restricted by its labile nature and inadequate delivery. Here, a nanotechnology approach was evaluated using catalase-loaded, poly(lactic co-glycolic acid) nanoparticles (NPs) in human neuronal protection against oxidative damage. This study showed highly efficient catalase encapsulation capable of retaining∼99% enzymatic activity. NPs released catalase rapidly, and antioxidant activity was sustained for over a month. NP uptake in human neurons was rapid and nontoxic. Although human neurons were highly sensitive to H2O2, NP-mediated catalase delivery successfully protected cultured neurons from H2O2-induced oxidative stress. Catalase-loaded NPs significantly reduced H2O2-induced protein oxidation, DNA damage, mitochondrial membrane transition pore opening and loss of cell membrane integrity and restored neuronal morphology, neurite network and microtubule-associated protein-2 levels. Further, catalase-loaded NPs improved neuronal recovery from H2O2 pre-exposure better than free catalase, suggesting possible applications in ameliorating stroke-relevant oxidative stress. Brain targeting of catalase-loaded NPs may find wide therapeutic applications for oxidative stress-associated acute and chronic neurodegenerative disorders.  相似文献   

8.
In photosynthetic organisms, sudden changes in light intensity perturb the photosynthetic electron flow and lead to an increased production of reactive oxygen species. At the same time, thioredoxins can sense the redox state of the chloroplast. According to our hypothesis, thioredoxins and related thiol reactive molecules downregulate the activity of H2O2-detoxifying enzymes, and thereby allow a transient oxidative burst that triggers the expression of H2O2 responsive genes. It has been shown recently that upon light stress, catalase activity was reversibly inhibited in Chlamydomonas reinhardtii in correlation with a transient increase in the level of H2O2. Here, it is shown that Arabidopsis thaliana mutants lacking the NADP–malate dehydrogenase have lost the reversible inactivation of catalase activity and the increase in H2O2 levels when exposed to high light. The mutants were slightly affected in growth and accumulated higher levels of NADPH in the chloroplast than the wild-type. We propose that the malate valve plays an essential role in the regulation of catalase activity and the accumulation of a H2O2 signal by transmitting the redox state of the chloroplast to other cell compartments.  相似文献   

9.
Plasma membrane (PM) H+-ATPase and NADPH oxidase (NOX) are two key enzymes responsible for cell wall relaxation during elongation growth through apoplastic acidification and production of ˙OH radical via O2˙?, respectively. Our experiments revealed a putative feed-forward loop between these enzymes in growing roots of Vigna radiata (L.) Wilczek seedlings. Thus, NOX activity was found to be dependent on proton gradient generated across PM by H+-ATPase as evident from pharmacological experiments using carbonyl cyanide m-chlorophenylhydrazone (CCCP; protonophore) and sodium ortho-vanadate (PM H+-ATPase inhibitor). Conversely, H+-ATPase activity retarded in response to different ROS scavengers [CuCl2, N, N’ –dimethylthiourea (DMTU) and catalase] and NOX inhibitors [ZnCl2 and diphenyleneiodonium (DPI)], while H2O2 promoted PM H+-ATPase activity at lower concentrations. Repressing effects of Ca+2 antagonists (La+3 and EGTA) on the activity of both the enzymes indicate its possible mediation. Since, unlike animal NOX, the plant versions do not possess proton channel activity, harmonized functioning of PM H+-ATPase and NOX appears to be justified. Plasma membrane NADPH oxidase and H+-ATPase are functionally synchronized and they work cooperatively to maintain the membrane electrical balance while mediating plant cell growth through wall relaxation.  相似文献   

10.
Holden MJ  Sze H 《Plant physiology》1987,84(3):670-676
We have tested directly the effect of Helminthosporium maydis T (Hmt) toxin and various analogs on the membrane potential formed in mitochondria isolated from a Texas (T) cytoplasmic male-sterile and a normal (N) corn. ATP, malate or succinate generated a membrane potential (negative inside) as monitored by the absorbance change of a cationic dye, safranine. The relative membrane potential (Δψ) could also be detected indirectly as 45Ca2+ uptake. Hmt toxin added to T mitochondria dissipated the steady state Δψ similar to addition of a protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Toxin analogs (Cpd XIII: C41H68O12 and Cpd IV: C25H44O6), reduced native toxin (RT2C: C41H84O13) and Pm toxin (band A: C33H60O8, produced by the fungus, Phyllosticta maydis) were effective in dissipating Δψ and decreasing Ca2+ uptake with the following order: Pm (100) » HmT (23-30) > Cpd XIII (11-25) » RT2C (0-4−1.8) > Cpd IV (0.2−1.0). In contrast, the toxins and analogs had no effect on Δψ formed in N mitochondria. The striking similarities of the HmT toxin (band 1: C41H68O13) and Cpd XIII on T mitochondrial activities provide strong evidence supporting the correctness of the polyketol structure assigned to the native toxin. Since the Δψ in energized mitochondria is caused mainly by the electrogenic extrusion of H+, the results support the idea that HmT toxin increases membrane permeability of T mitochondria to H+. The host specificity of the toxin suggests that an interaction with unique target site(s) on the inner mitochondrial membrane of T corn causes H+ leakage.  相似文献   

11.
Mitogenic cell proliferation requires a rapid and transient H2O2 generation, which is blocked by catalase or PKA activators. Previously, we observed that anemic HIV(+) individuals expressed acidic pIs of catalase in RBC with significantly high activities [Mol Cell Biochem 165: 77–81, 1996]. These findings led us to hypothesize that cell signaling molecules regulate catalase to control cell mitogenesis. To test the hypothesis, we determined (i) whether RBC counts correlate with their catalase activities, (ii) whether protein kinases and phosphatases alter catalase activity in vitro, and (iii) whether protein kinase activators increase catalase activity to suppress proliferation of cultured cells. The results indicated that RBC counts inversely correlated with RBC catalase activities in both HIV(+) (r: –0.6769, r2: 0.4582, n: 69 male, p < 0.0001) and HIV(–) (r: –0.3827, r2: 0.1464, n: 177 male, p < 0.0001) populations. Catalytic PKA, PKC and Casein Kinase II, but none of PKG, Ca2+/calmodulin kinase II and p34cdc/cyclinB, rapidly elevated catalase activity in vitro by up to 2-fold. Whereas a major CAT subunit (60 kDa) showed immunoreactive phosphoserine and phosphothreonine, the kinases- and -32P-ATP-dependent phosphorylation occurred with a minor component (110 kDa). Among PKC isozymes examined, PKCz was the most effective modulator followed by PKC, and protein phosphatase 1 and 2A decreased the catalase activity. PKA and PKCz activators of forskolin and okadaic acid increased catalase activity and 110 kDa expression in NIH3T3 cells up to 2.4-fold and suppressed the cell growth, showing an inverse correlation of the indices (r: –0.9286, r2: 0.8622, n: 18, p < 0.0001). Taken together, these results suggest for the first time that catalase is under the regulation of cell signaling molecules and capable of modulating mitogenic cell proliferation.  相似文献   

12.
We have previously reported that when garter snakesThamnophis sirtalis parietalis, a freeze tolerant species, were exposed to 5 h freezing at –2.5° C organs showed increases in the activities of anti-oxidant enzymes, especially catalase in skeletal muscle. This was interpreted to be an adaptation to deal with the potentially injurious postischemic situation of thawing. The present work analyzesin vitro oxidative inactivation of a possible target of postischemic-induced free radical damage, the secondary anti-oxidant defense glutathione-S transferase, and the protective role of endogenous catalase. Approximately 50% of GST activity from snake muscle homogenates was lost within 2 min after addition of H2O2 plus Fe(II) (0.4–2 mM) in media containing azide whereas addition of iron alone resulted in no damaging effects. The opposing effects of dimethyl sulfoxide and EDTA in modifying this process strongly suggested the involvement of ·OH radicals in the GST inactivation. A partial recovery of the activity was promoted by mercaptoethanol, indicating that sulphydryl groups oxidation participate in the mechanism of GST inactivation. Pre-incubation of the reaction media containing H2O2 caused protection of the GST activity only in the absence of azide, indicating that endogenous catalase modulates the extent of oxyradical damage. The protective pre-incubation effect was more efficacious when employing homogenates from lung and liver, organs that have higher catalase activities, as well as homogenates from freezing-exposed muscle (that show an 80% increase in catalase activity, compared with control). The protection against GST inactivation observed in muscle from frozen snakes demonstrates that increased anti-oxidant defenses during freezing exposure can be a key factor in controllingin vitro oxyradical damage. The implications for natural freeze tolerance are discussed.  相似文献   

13.
Although it is understood that hydrogen peroxide (H2O2) promotes cellular proliferation, little is known about its role in endothelial cell cycle progression. To assess the regulatory role of endogenously produced H2O2 in cell cycle progression, we studied the cell cycle progression in mouse aortic endothelial cells (MAECs) obtained from mice overexpressing a human catalase transgene (hCatTg), which destroys H2O2. The hCatTg MAECs displayed a prolonged doubling time compared to wild-type controls (44.0  ±  4.7 h versus 28.6  ±  0.8 h, p < 0.05), consistent with a diminished growth rate and H2O2 release. Incubation with aminotriazole, a catalase inhibitor, prevented the observed diminished growth rate in hCatTg MAECs. Inhibition of catalase activity with aminotriazole abrogated catalase overexpression-induced antiproliferative action. Flow cytometry analysis indicated that the prolonged doubling time was principally due to an extended G0/G1 phase in hCatTg MAECs compared to the wild-type cells (25.0  ±  0.9 h versus 15.9  ±  1.4 h, p  <  0.05). The hCatTg MAECs also exhibited decreased activities of the cyclin-dependent kinase (Cdk) complexes responsible for G0/G1- to S-phase transition in the cell cycle, including the cyclin D–Cdk4 and cyclin E–Cdk2 complexes. Moreover, the reduction in cyclin–Cdk activities in hCatTg MAECs was accompanied by increased protein levels of two Cdk inhibitors, p21 and p27, which inhibit the Cdk activity required for the G0/G1- to S-phase transition. Knockdown of p21 and/or p27 attenuated the antiproliferative effect of catalase overexpression in MAECs. These results, together with the fact that catalase is an H2O2 scavenger, suggest that endogenously produced H2O2 mediates MAEC proliferation by fostering the transition from G0/G1 to S phase.  相似文献   

14.
Summary Characteristics of the native and reconstituted H+-ATPase from the plasma membrane of red beet (Beta vulgaris L.) were examined. The partially purified, reconstituted H+-ATPase retained characteristics similar to those of the native plasma membrane H+-ATPase following reconstitution into proteoliposomes. ATPase activity and H+ transport of both enzymes were inhibited by vanadate, DCCD, DES and mersalyl. Slight inhibition of ATPase activity associated with native plasma membranes by oligomycin, azide, molybdate or NO 3 was eliminated during solubilization and reconstitution, indicating the loss of contaminating ATPase activities. Both native and reconstituted ATPase activities and H+ transport showed a pH optimum of 6.5, required a divalent cation (Co2+>Mg2+>Mn2+>Zn2+>Ca2+), and preferred ATP as substrate. The Mg:ATP kinetics of the two ATPase activities were similar, showing simple Michaelis-Menten kinetics. Saturation occurred between 3 and 5mM Mg: ATP, with aK m of 0.33 and 0.46mM Mg: ATP for the native and reconstituted enzymes, respectively. The temperature optimum for the ATPase was shifted from 45 to 35°C following reconstitution. Both native and reconstituted H+-ATPases were stimulated by monovalent ions. Native plasma membrane H+-ATPase showed an order of cation preference of K+>NH 4 + >Rb+>Na+>Cs+>Li+>choline+. This basic order was unchanged following reconstitution, with K+, NH 4 + , Rb+ and Cs+ being the preferred cations. Both enzymes were also stimulated by anions although to a lesser degree. The order of anion preference differed between the two enzymes. Salt stimulation of ATPase activity was enhanced greatly following reconstitution. Stimulation by KCl was 26% for native ATPase activity, increasing to 228% for reconstituted ATPase activity. In terms of H+ transport, both enzymes required a cation such as K+ for maximal transport activity, but were stimulated preferentially by Cl even in the presence of valinomycin. This suggests that the stimulatory effect of anions on enzyme activity is not simply as a permeant anion, dissipating a positive interior membrane potential, but may involve a direct anion activation of the plasma membrane H+-ATPase.  相似文献   

15.
Spraying mustard (Sinapis alba L.) seedlings with salicylic acid (SA) solutions between 10 and 500 μm significantly improved their tolerance to a subsequent heat shock at 55°C for 1.5 h. The effects of SA were concentration dependent, with higher concentrations failing to induce thermotolerance. The time course of thermotolerance induced by 100 μm SA was similar to that obtained with seedlings acclimated at 45°C for 1 h. We examined the hypothesis that induced thermotolerance involved H2O2. Heat shock at 55°C caused a significant increase in endogenous H2O2 and reduced catalase activity. A peak in H2O2 content was observed within 5 min of either SA treatment or transfer to the 45°C acclimation temperature. Between 2 and 3 h after SA treatment or heat acclimation, both H2O2 and catalase activity significantly decreased below control levels. The lowered H2O2 content and catalase activity occurred in the period of maximum thermoprotection. It is suggested that thermoprotection obtained either by spraying SA or by heat acclimation may be achieved by a common signal transduction pathway involving an early increase in H2O2.  相似文献   

16.
This study was conducted to investigate how the activity and expression of certain paramount antioxidant enzymes respond to grape seed extract (GSE) addition in primary muscle cells of goats. Gluteal primary muscle cells (PMCs) isolated from a 3-week old goat were cultivated as an unstressed cell model, or they were exposed to 100 µM H2O2 to establish a H2O2-stimulated cell model. The activities of catalase (CAT), superoxide dismutases (SOD) and glutathione peroxidases (GPx) in combination with other relevant antioxidant indexes [i.e., reduced glutathione (GSH) and total antioxidant capacity (TAOC)] in response to GSE addition were tested in the unstressed and H2O2-stimulated cell models, and the relative mRNA levels of the CAT, GuZu-SOD, and GPx-1 genes were measured by qPCR. In unstressed PMCs, GSE addition at the dose of 10 µg/ml strikingly attenuated the expression levels of CAT and CuZn-SOD as well as the corresponding enzyme activities. By contrast, in cells pretreated with 100 µM H2O2, the expression and activity levels of these two antioxidant enzymes were enhanced by GSE addition at 10 µg/ml. GSE addition promoted GPx activity in both unstressed and stressed PMCs, while the expression of the GPx 1 gene displayed partial divergence with GPx activity, which was mitigated by GSE addition at 10 µg/ml in unstressed PMCs. GSH remained comparatively stable except for GSE addition to H2O2-stimulated PMCs at 60 µg/ml, in which a dramatic depletion of GSH occurred. Moreover, GSE addition enhanced TAOC in unstressed (but not H2O2-stimulated) PMCs. GSE addition exerted a bidirectional modulating effect on the mRNA levels and activities of CAT and SOD in unstressed and stressed PMCs at a moderate dose, and it only exhibited a unidirectional effect on the promotion of GPx activity, reflecting its potential to improve antioxidant protection in ruminants.  相似文献   

17.
18.
Summary In pig lung tissue catalase positive particles (CPs) are abundant especially in type II pneumocytes and in Clara cells.In both cell types they occur circular, oval or elongated membrane profiles surrounding a moderately electron dense matrix lacking a crystalline core. In Clara cells and in part of type II pneumocytes they are located as individual particles without any evident morphological relation to other cell organelles. In part, of type II pneumocytes 5–8 particles are forming a group and their close relation to agranular endoplasmic reticulum cisterns is evident. The particles can be purified from lung homogenates by fractionated pelleting and subsequent rate sedimentation in a sucrose gradient using a zonal rotor. The catalase rich fraction bands in the middle of the gradient whereas cytochrome oxidase and part of the acid phosphatase sediments at its heavy end. A second part of acid phosphatase stays at the light end of the gradient and — according to morphological control — seems to correspond to lamellar bodies of the type II pneumocytes. The purified catalase positive particles do not contain hydroxyacid and d-aminoacid oxidases thought to be characteristic H2O2 producing enzymes of peroxisomal systems. The buoyant density of the particles (d=1.195 g/cm3) is lower than that of liver peroxisomes.Cytochemical controls of the peroxisomal pellets exhibit the particles partly uniformly filled with reaction product, partly irregularly stained.  相似文献   

19.
Activities of enzymes decomposing hydrogen peroxide (H2O2) under long exposure to hardening low temperatures and the effect of Δ12-acyl-lipid desaturase on these processes were studied on potato (Solanum tuberosum L., cv. Desnitsa), which typically represents cold-tolerant plants. We compared nontransformed plants (control) and the line transformed with the construction carrying the target desA gene of the mentioned desaturase from cyanobacterium Synechocystis sp. PCC (desA-licBM3 plants). The plants were hardened at 5°C for six days under illumination of 50 μmol/(m2 s). The hardening was found to favor plant tolerance to the subsequent frost, and the desA-licBM3 plants exceed the controls in this property. Of the studied H2O2-scavenging enzymes, soluble type III peroxidases (guaiacol peroxidases) displayed the most activity, and type I peroxidase (ascorbate peroxidase) was the least active in the two potato lines over the hardening period. The activity of catalase increased twofold in the control and fourfold in the transformed plants in the first day of the hardening. However, the doubled catalase activity did not appear to compensate the H2O2 accumulation over this period. The recorded rise in catalase activity in the desA-licBM3 plants, together with the high activity of guaiacol peroxidases, favored lowering the hydrogen peroxide level in comparison with the initial values. For the first time, electrophoresis revealed two catalase isoforms, CAT1 and CAT2, in leaves of both potato lines. The significance of CAT1 was greater than that of CAT2 in the total catalase activity during the hardening period. It is concluded that, under the long-term cold hardening of potato plants, the content of hydrogen peroxide is determined by highly active guaiacol peroxidases and Class I catalase exerting energy-independent H2O2 decomposing. In this case, in the transformants that are rich in membrane lipids, where polyunsaturated fatty acids predominate, the activity of H2O2-scavenging enzymes increased significantly more than in the control, which is why the hardening of the transformants is more effective.  相似文献   

20.
Hydrogen peroxide mediated killing of bacteria   总被引:6,自引:0,他引:6  
Summary Polymorphonuclear leukocytes (PMN) or neutrophils have multiple systems available for killing ingested bacteria. Nearly each of these incorporates H2O2 indicating the essential nature of this reactive oxygen intermediate for microbicidal activity. Following ingestion of bacteria by PMN, H2O2 is formed by the respiratory burst which consumes O2 and generates H2O2 from O2–. H2O2 is deposited intracellularly near bacteria within phagocytic vacuoles where it can react with the MPO-H2O2-halide system to form toxic hyperchlorous acid (HOCl) and/or possibly singlet oxygen (1O2). H2O2 can also react with O2– and/or iron (Fe++) from lactoferrin or bacteria to form the highly toxic hydroxyl radical (1OH). These mechanisms appear important since deficiencies of H2O2 production, myeloperoxidase or lactoferrin frequently increases their owner's susceptibility to infection. In particular, examination of PMN from infection prone patients with chronic granulomatous disease (CGD) most clearly demonstrates the importance of H2O2 in killing of bacteria. CGD PMN lack the capacity to effectively generate H2O2 and subsequently have impaired ability to kill catalase positive (H2O2 producing) but not catalase negative (not H2O2 producing) bacteria. PMN also have catalase and glutathione peroxidase systems in their cytoplasms to protect themselves from the toxicity of H2O2. Finally, while H2O2 is critical for host defense, it can also be released extracellularly and thereby play a significant role in PMN mediated tissue injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号