首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a further, yet important, step in applying Catania Mouse Model & simulator (SimTriplex) of immune system response to vaccination. In particular we show that, as immune response can induce toxicity, one can calibrate the vaccine administrations in such a way to avoid toxicity effects, keeping immunoprevention from cancer. This result increases the model's potential applications.  相似文献   

2.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained.SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.  相似文献   

3.
Apoptosis in macrophages is responsible for immune-depression and pathological effects during malaria. Phagocytosis of PRBC causes induction of apoptosis in macrophages through release of cytosolic factors from infected cells. Heme polymer or β-hematin causes dose-dependent death of macrophages with LC50 of 132 µg/ml and 182 µg/ml respectively. The toxicity of hemin or heme polymer was amplified several folds in the presence of non-toxic concentration of methemoglobin. β-hematin uptake in macrophage through phagocytosis is crucial for enhanced toxicological effects in the presence of methemoglobin. Higher accumulation of β-hematin is observed in macrophages treated with β-hematin along with methemoglobin. Light and scanning electron microscopic observations further confirm accumulation of β-hematin with cellular toxicity. Toxicological potentiation of pro-oxidant molecules toward macrophages depends on generation of H2O2 and independent to release of free iron from pro-oxidant molecules. Methemoglobin oxidizes β-hematin to form oxidized β-hematin (βH*) through single electron transfer mechanism. Pre-treatment of reaction mixture with spin-trap Phenyl-N-t-butyl-nitrone dose-dependently reverses the β-hematin toxicity, indicates crucial role of βH* generation with the toxicological potentiation. Acridine orange/ethidium bromide staining and DNA fragmentation analysis indicate that macrophage follows an oxidative stress dependent apoptotic pathway to cause death. In summary, current work highlights mutual co-operation between methemoglobin and different pro-oxidant molecules to enhance toxicity towards macrophages. Hence, methemoglobin peroxidase activity can be probed for subduing cellular toxicity of pro-oxidant molecules and it may in-turn make up for host immune response against the malaria parasite.  相似文献   

4.

Background

Immucillins ImmA (IA), ImmH (IH) and SerMe-ImmH (SMIH) are synthetic deazapurine nucleoside analogues that inhibit Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro without macrophage toxicity. Immucillins are compared to the Glucantime standard drug in the chemotherapy of Leishmania (L.) infantum chagasi infection in mice and hamsters. These agents are tested for toxicity and immune system response.

Methodology/Principal Findings

BALB/c mice were infected with 107 amastigotes, treated with IA, IH, SMIH or Glucantime (2.5mg/kg/day) and monitored for clinical variables, parasite load, antibody levels and splenocyte IFN-γ, TNF-α, and IL-10 expression. Cytokines and CD4+, CD8+ and CD19+ lymphocyte frequencies were assessed in uninfected controls and in response to immucillins. Urea, creatinine, GOT and GPT levels were monitored in sera. Anti-Leishmania-specific IgG1 antibodies (anti-NH36) increased in untreated animals. IgG2a response, high levels of IFN-γ, TNF-α and lower levels of IL-10 were detected in mice treated with the immucillins and Glucantime. Immucillins permitted normal weight gain, prevented hepato-splenomegaly and cleared the parasite infection (85–89%) without renal and hepatic toxicity. Immucillins promoted 35% lower secretion of IFN-γ in uninfected controls than in infected mice. IA and IH increased the CD4+ T and CD19+ B cell frequencies. SMIH increased only the proportion of CD-19 B cells. IA and IH also cured infected hamsters with lower toxicity than Glucantime.

Conclusions/Significance

Immucillins IA, IH and SMIH were effective in treating leishmaniasis in mice. In hamsters, IA and IH were also effective. The highest therapeutic efficacy was obtained with IA, possibly due to its induction of a TH1 immune response. Low immucillin doses were required and showed no toxicity. Our results disclose the potential use of IA and IH in the therapy of visceral leishmaniasis.  相似文献   

5.
The immune response to viral infection is ideally rapid and specific, resulting in viral clearance and establishment of immune memory. Some viruses such as HIV can evade such responses leading to chronic infection, while others like Influenza A can elicit a severe inflammatory response with immune-related complications including death. Cytokines play a major role in shaping the appropriate outcomes to infection. While Interleukin-7 (IL-7) has a critical role in T and B cell development, treatment with IL-7 has recently been shown to aid the adaptive T cell response in clearance of chronic viral infection. In contrast, the IL-7-related cytokine thymic stromal lymphopoietin (TSLP) has a limited role in lymphocyte development but is important in the immune response to parasitic worms and allergens. The role for these cytokines in the immune response to an acute viral infection is unclear. IL-7 and TSLP share IL-7Rα as part of their heterodimeric receptors with the gamma common chain (γc) and TSLPR, respectively. We investigated the role of IL-7 and TSLP in the primary immune response to influenza A infection using hypomorphic IL-7Rα (IL-7Rα449F) and TSLPR−/− mice. We found that IL-7, but not TSLP, plays an important role in control of influenza A virus. We also showed that IL-7 signaling was necessary for the generation of a robust influenza A-specific CD4 and CD8 T cell response and that this requirement is intrinsic to CD8 T cells. These findings demonstrate a significant role for IL-7 during acute viral infection.  相似文献   

6.
Bleomycin (BLM) induces life-threatening pneumonitis and pulmonary fibrosis in 20% of patients, limiting its use as a chemotherapeutic agent. Oligonucleotides expressing immunostimulatory CpG motifs (CpG ODN) stimulate cells that express Toll-like receptor 9 to initiate an inflammatory response. This short-lived inflammation is physiologically suppressed by a counter-regulatory process that peaks five days later. Using a murine model of BLM-induced lung injury, the effect of CpG ODN treatment on pulmonary inflammation, fibrosis and mortality was examined. Administering CpG ODN 5 days before BLM (so that the peak of the counter-regulatory process induced by CpG ODN coincided with BLM delivery) resulted in a dose-dependent reduction in pulmonary toxicity (p < 0.005). Delaying the initiation of therapy until the day of or after BLM administration worsened the inflammatory process, consistent with the counter-regulatory process rather than initial pro-inflammatory response being critical to CpG induced protection. The protection afforded by CpG ODN correlated with reduced leukocyte accumulation and inflammatory cytokine/chemokine production in the lungs. These changes were associated with the increased production of IL-10, a critical element of the counter-regulatory process triggered by CpG ODN, and the concomitant down-regulation of BLM-induced IL-17A and TGF-β1 (which promote pulmonary toxicity). This work represents the first example of the physiologic counter-regulation of TLR induced immune activation being harnessed to block an unrelated inflammatory response.  相似文献   

7.
We present and analyze a model for the dynamics of the interactions between a pathogen and its host’s immune response. The model consists of two differential equations, one for pathogen load, the other one for an index of specific immunity. Differently from other simple models in the literature, this model exhibits, according to the hosts’ or pathogen’s parameter values, or to the initial infection size, a rich repertoire of behaviours: immediate clearing of the pathogen through aspecific immune response; or acute infection followed by clearing of the pathogen through specific immune response; or uncontrolled infections; or acute infection followed by convergence to a stable state of chronic infection; or periodic solutions with intermittent acute infections. The model can also mimic some features of immune response after vaccination. This model could be a basis on which to build epidemic models including immunological features.  相似文献   

8.
IκB kinase ε (IKKε) is a non-canonical IκB kinase that is extensively studied in the context of innate immune response. Recently, significant progress has been made in understanding the role of IKKε in interferon (IFN) signaling. In addition to its roles in innate immunity, recent studies also demonstrate that IKKε is a key regulator of the adaptive immune response. Specifically, IKKε functions as a negative feedback kinase to curtail CD8 T cell response, implying that it can be a potential therapeutic target to boost antiviral and antitumor T cell immunity. In this review, we highlight the roles of IKKε in regulating IFN signaling and T cell immunity, and discuss a few imminent questions that remain to be answered.  相似文献   

9.
10.
The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level.  相似文献   

11.

Background

Interferon-beta (IFNβ) regulates the expression of a complex set of pro- as well as anti-inflammatory genes. In cohorts of MS patients unstratified for therapeutic response to IFNβ, normal vaccine-specific immune responses have been observed. Data capturing antigen-specific immune responses in cohorts of subjects defined by response to IFNβ-therapy are not available.

Objective

To assess antigen-specific immune responses in a cohort of MS patients responding clinically and radiologically to IFNβ.

Methods

In 26 MS patients, clinical and MRI disease activity were assessed before and under treatment with IFNβ. Humoral and cellular immune response to influenza vaccine was prospectively characterized in these individuals, and 33 healthy controls by influenza-specific Enzyme-Linked Immunosorbent Assay (ELISA) and Enzyme Linked Immuno Spot Technique (ELISPOT).

Results

Related to pre-treatment disease activity, IFNβ reduced clinical and radiological MS disease-activity. Following influenza vaccination, frequencies of influenza-specific T cells and concentrations of anti-influenza A and B IgM and IgG increased comparably in MS-patients and in healthy controls.

Conclusions

By showing in a cohort of MS-patients responding to IFNβ vaccine-specific immune responses comparable to controls, this study indicates that antigen-specific immune responses can be preserved under successful IFNβ-therapy.  相似文献   

12.
Activation of the FcγR via antigen containing immune complexes can lead to the generation of reactive oxygen species, which are potent signal transducing molecules. However, whether ROS contribute to FcγR signaling has not been studied extensively. We set out to elucidate the role of NADPH oxidase-generated ROS in macrophage activation following FcγR engagement using antigen-containing immune complexes. We hypothesized that NOX2 generated ROS is necessary for propagation of downstream FcγR signaling and initiation of the innate immune response. Following exposure of murine bone marrow-derived macrophages (BMDMs) to inactivated Francisella tularensis (iFt)-containing immune complexes, we observed a significant increase in the innate inflammatory cytokine IL-6 at 24 h compared with macrophages treated with Ft LVS-containing immune complexes. Ligation of the FcγR by opsonized Ft also results in significant ROS production. Macrophages lacking the gp91phox subunit of NOX2 fail to produce ROS upon FcγR ligation, resulting in decreased Akt phosphorylation and a reduction in the levels of IL-6 compared with wild type macrophages. Similar results were seen following infection of BMDMs with catalase deficient Ft that fail to scavenge hydrogen peroxide. In conclusion, our findings demonstrate that ROS participate in elicitation of an effective innate immune in response to antigen-containing immune complexes through FcγR.  相似文献   

13.
The parasite Toxoplasma gondii can infect most mammals and birds, sometimes causing severe pathology. Previous studies have reported that multi-antigenic vaccines were more effective than single-antigenic vaccine. It was also reported that the a single-gene vaccine with SAG1 or ROP2, GRA2 could only produce partial protection against T. gondii. In this study, we constructed a multi-antigenic DNA vaccine containing SAG1, ROP2 and GRA2, and evaluated its immune response. We used IL-12 as an adjuvant to enhance the immune response. We immunized BALB/c mice intramuscularly. After immunization, we evaluated the immune response using lymphocyte proliferation assay, cytokine and antibody measurements. The results showed that the group immunized with pcDNA3.1–SAG1–ROP2–GRA2 produced high Th1 immune response compared to other groups immunized with double-gene plasmid, empty plasmid or phosphate-buffered saline, respectively. Moreover, the co-immunization with IL-12 genes enhanced the immune response significantly and prolonged survival time. The current study showed that multi-antigenic DNA with IL-12 produced potent, effective and long-term protection against T. gondii challenge.  相似文献   

14.
IgE antibodies to gal-α-1,3-gal-β-1,4-GlcNAc (α-gal) can mediate a novel form of delayed anaphylaxis to red meat. Although IgG antibodies to α-gal (anti-α-gal or anti-Gal) are widely expressed in humans, IgE anti-α-gal is not. We explored the relationship between the IgG and IgE responses to both α-gal and the related blood group B antigen. Contradicting previous reports, antibodies to α-gal were found to be significantly less abundant in individuals with blood group B or AB. Importantly, we established a connection between IgE and IgG responses to α-gal: elevated titers of IgG anti-α-gal were found in IgE-positive subjects. In particular, proportionally more IgG1 anti-α-gal was found in IgE-positive subjects against a background of IgG2 production specific for α-gal. Thus, two types of immune response to α-gal epitopes can be distinguished: a ‘typical’ IgG2 response, presumably in response to gut bacteria, and an ‘atypical’, Th2-like response leading to IgG1 and IgE in addition to IgG2. These results suggest that IgE to a carbohydrate antigen can be formed (probably as part of a glycoprotein or glycolipid) even against a background of bacterial immune stimulation with essentially the same antigen.  相似文献   

15.
Annual outbreaks of influenza infections, caused by new influenza virus subtypes and high incidences of zoonosis, make seasonal influenza one of the most unpredictable and serious health threats worldwide. Currently available vaccines, though the main prevention strategy, can neither efficiently be adapted to new circulating virus subtypes nor provide high amounts to meet the global demand fast enough. New influenza vaccines quickly adapted to current virus strains are needed. In the present study we investigated the local toxicity and capacity of a new inhalable influenza vaccine to induce an antigen-specific recall response at the site of virus entry in human precision-cut lung slices (PCLS). This new vaccine combines recombinant H1N1 influenza hemagglutinin (HAC1), produced in tobacco plants, and a silica nanoparticle (NP)-based drug delivery system. We found no local cellular toxicity of the vaccine within applicable concentrations. However higher concentrations of NP (≥103 µg/ml) dose-dependently decreased viability of human PCLS. Furthermore NP, not the protein, provoked a dose-dependent induction of TNF-α and IL-1β, indicating adjuvant properties of silica. In contrast, we found an antigen-specific induction of the T cell proliferation and differentiation cytokine, IL-2, compared to baseline level (152±49 pg/mg vs. 22±5 pg/mg), which could not be seen for the NP alone. Additionally, treatment with 10 µg/ml HAC1 caused a 6-times higher secretion of IFN-γ compared to baseline (602±307 pg/mg vs. 97±51 pg/mg). This antigen-induced IFN-γ secretion was further boosted by the adjuvant effect of silica NP for the formulated vaccine to a 12-fold increase (97±51 pg/mg vs. 1226±535 pg/mg). Thus we were able to show that the plant-produced vaccine induced an adequate innate immune response and re-activated an established antigen-specific T cell response within a non-toxic range in human PCLS at the site of virus entry.  相似文献   

16.
The immune response is essential for survival by destroying microorganisms and pre-cancerous cells. However, inflammation, one aspect of this response, can result in short- and long-term deleterious side-effects. Mclk1 +/− mutant mice can be long-lived despite displaying a hair-trigger inflammatory response and chronically activated macrophages as a result of high mitochondrial ROS generation. Here we ask whether this phenotype is beneficial or simply tolerated. We used models of infection by Salmonella serovars and found that Mclk1 +/− mutants mount a stronger immune response, control bacterial proliferation better, and are resistant to cell and tissue damage resulting from the response, including fibrosis and types of oxidative damage that are considered to be biomarkers of aging. Moreover, these same types of tissue damage were found to be low in untreated 23 months-old mutants. We also examined the initiation of tumour growth after transplantation of mouse LLC1 carcinoma cells into Mclk1 +/− mutants, as well as during spontaneous tumorigenesis in Mclk1 +/− Trp53 +/− double mutants. Tumour latency was increased by the Mclk1 +/− genotype in both models. Furthermore, we used the transplantation model to show that splenic CD8+ T lymphocytes from Mclk1 +/− graft recipients show enhanced cytotoxicity against LLC1 cells in vitro. Mclk1 +/− mutants thus display an association of an enhanced immune response with partial protection from age-dependent processes and from pathologies similar to those that are found with increased frequency during the aging process. This suggests that the immune phenotype of these mutants might contribute to their longevity. We discuss how these findings suggest a broader view of how the immune response might impact the aging process.  相似文献   

17.

Objective

To investigate clinical and laboratory toxicity in patients with unresectable liver metastases, treated with yttrium-90 radioembolization (90Y-RE).

Methods

Patients with liver metastases treated with 90Y-RE, between February 1st 2009 and March 31st 2012, were included in this study. Clinical toxicity assessment was based on the reporting in patient’s charts. Laboratory investigations at baseline and during a four-month follow-up were used to assess laboratory toxicity according to the Common Terminology Criteria for Adverse Events version 4.02. The occurrence of grade 3–4 laboratory toxicity was stratified according to treatment strategy (whole liver treatment in one session versus sequential sessions). Response assessment was performed at the level of target lesions, whole liver and overall response in accordance with RECIST 1.1 at 3- and 6 months post-treatment. Median time to progression (TTP) and overall survival were calculated by Kaplan-Meier analysis.

Results

A total of 59 patients, with liver metastases from colorectal cancer (n = 30), neuroendocrine tumors (NET) (n = 6) and other primary tumors (n = 23) were included. Clinical toxicity after 90Y-RE treatment was confined to grade 1–2 events, predominantly post-embolization symptoms. No grade 3–4 clinical toxicity was observed, whereas laboratory toxicity grade 3–4 was observed in 38% of patients. Whole liver treatment in one session was not associated with increased laboratory toxicity. Three-months disease control rates for target lesions, whole liver and overall response were 35%, 21% and 19% respectively. Median TTP was 6.2 months for target lesions, 3.3 months for the whole liver and 3.0 months for overall response. Median overall survival was 8.9 months.

Conclusion

The risk of severe complications or grade 3–4 clinical toxicity in patients with liver metastases of various primary tumors undergoing 90Y-RE is low. In contrast, laboratory toxicity grade 3–4 can be expected to occur in more than one-third of patients without any clinical signs of radiation induced liver disease.  相似文献   

18.
Although B cells play important roles in the humoral immune response and the regulation of adaptive immunity, B cell subpopulations with unique phenotypes, particularly those with non-classical immune functions, should be further investigated. By challenging mice with Listeria monocytogenes, Escherichia coli, vesicular stomatitis virus and Toll-like receptor ligands, we identified an inducible CD11ahiFcγRIIIhi B cell subpopulation that is significantly expanded and produces high levels of IFN-γ during the early stage of the immune response. This subpopulation of B cells can promote macrophage activation via generating IFN-γ, thereby facilitating the innate immune response against intracellular bacterial infection. As this new subpopulation is of B cell origin and exhibits the phenotypic characteristics of B cells, we designated these cells as IFN-γ-producing innate B cells. Dendritic cells were essential for the inducible generation of these innate B cells from the follicular B cells via CD40L-CD40 ligation. Increased Bruton''s tyrosine kinase activation was found to be responsible for the increased activation of non-canonical NF-κB pathway in these innate B cells after CD40 ligation, with the consequent induction of additional IFN-γ production. The identification of this new population of innate B cells may contribute to a better understanding of B cell functions in anti-infection immune responses and immune regulation.  相似文献   

19.
Control of gammaherpesvirus infections requires a complex, well orchestrated immune response regulated by positive and negative co-signaling molecules. While the impact of co-stimulatory molecules has been addressed in various studies, the role of co-inhibitory receptors has not been tested. The ITIM-bearing CEACAM1 is an inhibitory receptor expressed by a variety of immune cells, including B, T and NK cells. Using Ceacam1−/− mice, we analyzed the in vivo function of CEACAM1 during acute and latent murine gammaherpesvirus 68 (MHV-68) infection. During acute lytic replication, we observed lower virus titers in the lungs of Ceacam1−/− mice than in WT mice. In contrast, during latency amplification, Ceacam1−/− mice displayed increased splenomegaly and a higher latent viral load in the spleen. Analysis of the immune response revealed increased virus-specific antibody levels in Ceacam1−/− mice, while the magnitude of the T cell-mediated antiviral immune response was reduced. These findings suggest that inhibitory receptors can modulate the efficacy of immune responses against gammaherpesvirus infections.  相似文献   

20.
Summary The humoral leukocyte adherence inhibition (H-LAI) assay has recently been found to measure an antitumor immunefactor. In this assay, trypsinized leukocytes from control persons are used as indicator cells and 0,25% serum from the patient is added to the assay system together with the relevant tumor antigen.In the present work, evidence is presented that the H-LAI response is mediated through in vitro-formed immune complexes. Different antibody-antigen pairs (anti-albumin — albumin; anti-2microglobulin — 2microglobulin; anti-carcinoembryonic antigen — carcinoembryonic antigen; anti-transferrin — transferrin) have been added to the assay mixture. A significant H-LAI response was observed when immune complexes were formed. On the other hand, when unrelated antibody — antigen pairs were added, no response was found. The specificity was demonstrated in experiments where two different antibodies were added simultaneously and the response tested both against the two corresponding antigens and against unrelated antigens.Since the same trypsinized indicator cells can be used for different immune complexes, it is likely that the response is mediated through common receptors on the cell surface with affinity for immune complexes, i.e., Fc-receptors. Presumably, the H-LAI test gives response to immune complexes in general and is as such not specific. The specificity is achieved through the addition of specific antigen and the subsequent in vitro formation of immune complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号