首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of accessible SH-groups was determined in membrane vesicles prepared from Escherichia coli growing in fermentation conditions at slightly alkaline pH on glucose with or without added formate. Addition of ATP or formate to the vesicles caused a approximately 1.4-fold increase in the number of accessible SH-groups. The increase was inhibited by treatment with N-ethylmaleimide or the presence of the F(0)F(1)-ATPase inhibitors N,N(')-dicyclohexylcarbodiimide or sodium azide. The increase in accessible SH-groups was also absent in strains with the ATP synthase operon deleted or with the single F(0) domain cysteine Cysb21 changed to Ala. Using hyc and hyf mutants, it was shown that the increase was also largely dependent on hydrogenase 4 or hydrogenase 3, main components of formate hydrogen lyase, when bacteria were grown in the absence or presence of added formate. These results suggest a relationship between the F(0)F(1)-ATP synthase and hydrogenase 4 or hydrogenase 3 under fermentation conditions.  相似文献   

2.
In the past, it has been difficult to discriminate between hydrogen synthesis and uptake for the three active hydrogenases in Escherichia coli (hydrogenase 1, 2, and 3); however, by combining isogenic deletion mutations from the Keio collection, we were able to see the role of hydrogenase 3. In a cell that lacks hydrogen uptake via hydrogenase 1 (hyaB) and via hydrogenase 2 (hybC), inactivation of hydrogenase 3 (hycE) decreased hydrogen uptake. Similarly, inactivation of the formate hydrogen lyase complex, which produces hydrogen from formate (fhlA) in the hyaB hybC background, also decreased hydrogen uptake; hence, hydrogenase 3 has significant hydrogen uptake activity. Moreover, hydrogen uptake could be restored in the hyaB hybC hycE and hyaB hybC fhlA mutants by expressing hycE and fhlA, respectively, from a plasmid. The hydrogen uptake results were corroborated using two independent methods (both filter plate assays and a gas-chromatography-based hydrogen uptake assay). A 30-fold increase in the forward reaction, hydrogen formation by hydrogenase 3, was also detected for the strain containing active hydrogenase 3 activity but no hydrogenase 1 or 2 activity relative to the strain lacking all three hydrogenases. These results indicate clearly that hydrogenase 3 is a reversible hydrogenase.  相似文献   

3.
Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH carries out a mixed-acid fermentation resulting in the production of formate among the other products that can be excreted or further oxidized to H(2) and CO(2). H(2) production is largely dependent on formate dehydrogenase H and hydrogenases 3 and 4 constituting two formate hydrogen lyases, and on the F(0)F(1)-ATPase. In this study, it has been shown that formate markedly increased ATPase activity in membrane vesicles. This activity was significantly (1.8-fold) stimulated by 100mM K(+) and inhibited by N,N(')-dicyclohexylcarbodiimide and sodium azide. The increase in ATPase activity was absent in atp, trkA, and hyf but not in hyc mutants. ATPase activity was also markedly increased by formate when bacteria were fermenting glucose with external formate (30mM) in the growth medium. However this activity was not stimulated by K(+) and absent in atp and hyc but not in hyf mutants. The effects of formate on ATPase activity disappeared when cells were performing anaerobic (nitrate/nitrite) or aerobic respiration. These results suggest that the F(0)F(1)-ATPase activity is dependent on K(+) uptake TrkA system and hydrogenase 4, and on hydrogenase 3 when cells are fermenting glucose in the absence and presence of external formate, respectively.  相似文献   

4.
5.
A correlation between the rate of ATP synthesis by F0F1 ATP synthase and formate oxidation by formate hydrogen lyase (FHL) has been found in inside-out membrane vesicles of the Escherichia coli mutant JW 136 (Δhyahyb) with double deletions of hydrogenases 1 and 2, grown anaerobically on glucose in the absence of external electron acceptors at pH 6.5. ATP synthesis was suppressed by the H+-ATPase inhibitors N,N′-dicyclohexylcarbodiimide, sodium azide, and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Copper ions inhibited formate-dependent hydrogenase and ATP-synthase activities but did not affect the ATPase activity of the vesicles. The maximal rate of ATP synthesis (0.83 μmol/min per mg protein) was determined at simultaneous application of sodium formate, ADP, and inorganic phosphate, and was stimulated by K+ ions. The results confirm the assumption of a dual role of hydrogenase 3, the formate hydrogen lyase subunit that can couple the reduction of protons to H2 and their translocation through membrane with chemiosmotic synthesis of ATP.  相似文献   

6.
Molecular hydrogen (H2) can be produced via hydrogenases during mixed-acid fermentation by bacteria. Escherichia coli possesses multiple (four) hydrogenases. Hydrogenase 3 (Hyd-3) and probably 4 (Hyd-4) with formate dehydrogenase H (Fdh-H) form two different H2-evolving formate hydrogen lyase (FHL) pathways during glucose fermentation. For both FHL forms, the hycB gene coding small subunit of Hyd-3 is required. Formation and activity of FHL also depends on the external pH ([pH]out) and the presence of formate. FHL is related with the F0F1-ATPase by supplying reducing equivalents and depending on proton-motive force. Two other hydrogenases, 1 (Hyd-1) and 2 (Hyd-2), are H2-oxidizing enzymes during glucose fermentation at neutral and low [pH]out. They operate in a reverse, H2-producing mode during glycerol fermentation at neutral [pH]out. Hyd-1 and Hyd-2 activity depends on F0F1. Moreover, Hyd-3 can also work in a reverse mode. Therefore, the operation direction and activity of all Hyd enzymes might determine H2 production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating of different Hyd enzymes activity is an effective way to enhance H2 production by bacteria in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H2 production, reduced fuels and other chemicals with higher yields than those obtained by common sugars.  相似文献   

7.
End-product synthesis and enzyme activities involved in pyruvate catabolism, H2 synthesis, and ethanol production in mid-log (OD600  0.25), early stationary (OD600  0.5), and stationary phase (OD600  0.7) cell extracts were determined in Clostridium thermocellum ATCC 27405 grown in batch cultures on cellobiose. Carbon dioxide, hydrogen, ethanol, acetate and formate were major end-products and their production paralleled growth and cellobiose consumption. Lactate dehydrogenase, pyruvate:formate lyase, pyruvate:ferredoxin oxidoreductase, methyl viologen-dependant hydrogenase, ferredoxin-dependant hydrogenase, NADH-dependant hydrogenase, NADPH-dependant hydrogenase, NADH-dependant acetaldehyde dehydrogenase, NADH-dependant alcohol dehydogenase, and NADPH-dependant alcohol dehydrogenase activities were detected in all extracts, while pyruate dehydrogenase and formate dehydrogenase activities were not detected. All hydrogenase activities decreased (2–12-fold) as growth progressed from early exponential to stationary phase. Alcohol dehydrogenase activities fluctuated only marginally (<45%), while lactate dehydrogenase, pyruvate:formate lyase, and pyruvate:ferredoxin oxidoreductase remained constant in all cell extracts. We have proposed a pathway involved in pyruvate catabolism and end-product formation based on enzyme activity profiles in conjunction with bioinformatics analysis.  相似文献   

8.
The ultrastructural locations of the coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase of Methanobacterium formicicum were determined using immunogold labeling of thin-sectioned, Lowicryl-embedded cells. Both enzymes were located predominantly at the cell membrane. Whole cells displayed minimal F420-dependent formate dehydrogenase activity or F420-dependent hydrogenase activity, and little activity was released upon osmotic shock treatment, suggesting that these enzymes are not soluble periplasmic proteins. Analysis of the deduced amino acid sequences of the formate dehydrogenase subunits revealed no hydrophobic regions that could qualify as putative membrane-spanning domains.Abbreviation PBST Phosphate-buffered saline containing 0.1% (v/v) Triton X-100  相似文献   

9.
Cell-free extracts of crotonate-grown cells of the syntrophic butyrate-oxidizing bacteriumSyntrophospora bryantii contained high hydrogenase activities (8.5–75.8 µmol · min–1 mg–1 protein) and relatively low formate dehydrogenase activities (0.04–0.07 µmol · min–1 mg–1 protein). The K M value and threshold value of the hydrogenase for H2 were 0.21 mM and 18 µM, respectively, whereas the K M value and threshold value of the formate dehydrogenase for formate were 0.22 mM and 10 µM, respectively. Hydrogenase, butyryl-CoA dehydrogenase and 3-OH-butyryl-CoA dehydrogenase were detected in the cytoplasmic fraction. Formate dehydrogenase and CO2 reductase were membrane-bound, likely located at the outer aspect of the cytoplasmic membrane. Results suggest that during syntrophic butyrate oxidation H2 is formed intracellularly while formate is formed at the outside of the cell.  相似文献   

10.
Pyruvate fermentation inRhodospirillum rubrum (strains F1, S1, and Ha) was investigated using cells precultured on different substrates anaerobically in the light and than transferred to anaerobic dark conditions. Pyruvate formate lyase was always the key enzyme in pyruvate fermentation but its activity was lower than in cells which have been precultured aerobically in darkness. The preculture substrate also had a clear influence on the pyruvate formate lyase activity. Strains F1 and S1 metabolized the produced formate further to H2 and CO2. A slight production of CO2 from pyruvate, without additional H2-production, could also be detected. It was concluded from this that under anaerobic dark conditions a pyruvate dehydrogenase was also functioning. On inhibition of pyruvate formate lyase the main part of pyruvate breakdown was taken over by pyruvate dehydrogenase.When enzyme synthesis was inhibited by chloramphenicol, propionate production in contrast to formate production was not affected. Protein synthesis was not significant during anaerobic dark culture. Bacteriochlorophyll. however, showed, after a lag phase, a clear rise.Abbreviations Bchl Bacteriochlorophyll - CoA Coenzyme A - DSM Deutsche Sammlung von Mikroorganismen (Göttingen) - OD optical density - PHBA poly--hydroxybutyric acid - R Rhodospirillum  相似文献   

11.
Brochothrix thermosphacta, a psychrophilic, facultative anaerobe, exhibited homolactic fermentation under anaerobic conditions in the presence of excess glucose. In glucose-limited chemostat culture (on synthetic medium), ethanol, acetate, formate and lactate were formed. Formation of ethanol and acetate was accounted for by the formate concentrations in culture filtrates. Acetate, formate and ethanol formation was enhanced at low growth rates in chemostat culture. O2-limited chemostat studies indicated that formate formation was inhibited by oxygen (<0.2 M) and studies with a variant, strain 301, which lacked pyruvate dehydrogenase activity, showed that cell culture in basal medium did not occur at O2 tensions greater than that preventing formate production in the wild-type strain. The data are consistent with stimulation of pyruvate formate lyase activity by glucose limitation, possibly because of decreased concentrations of glycolytic intermediates.S.P. Singh was and A. Garrett and P.J. Rogers are with the Division of Science and Technology, Griffith University, Brisbane 4111, Australia. J. McAvoy and A.F. Egan are with the CSIRO Meat Research Laboratory, Cannon Hills, Brisbane 4170, Australia. S.P. Singh is now with the Department of Microbiology, C.B.S. & H., G.B. Pant University of Agriculture & Technology, Pantnagar-263145, India.  相似文献   

12.
R Waugh  D H Boxer 《Biochimie》1986,68(1):157-166
Anaerobic growth in the presence of 0.6 mM NiCl2 was able to restore hydrogenase and benzyl-viologen-linked formate dehydrogenase activities to a mutant (FD12), which is normally defective in these activities. This mutant carries a mutation located near minute 58 in the genome. Hydrogenase isoenzyme I and II activities were restored along with the hydrogenase activity that forms part of the formate hydrogen lyase system. A plasmid (pRW1) was constructed, containing a 4.8 kb chromosomal DNA insert, which was able to complement the lesion in mutant FD12. Further mutants with mutations near 58 minutes on the chromosome, and which lacked hydrogenase and formate dehydrogenase activities were isolated. These mutants were divided into three groups. Class I mutants were restored to the wild-type phenotype either by growth with 0.6 mM NiCl2 or following transformation with pRW1. Class II mutants were also complemented by pRW1 but were unaffected by growth with NiCl2. Class III mutants were unaffected by both pRW1 and growth with NiCl2. The cloned 4.8 kb fragment of chromosomal DNA therefore encodes two genes essential for hydrogenase activity. Restriction analysis indicates that the cloned DNA is the same as a fragment that has previously been cloned and which complements the hydB locus (Sankar et al. (1985) J. Bacteriol., 162, 353-360). None of the three classes of mutants possess mutations in hydrogenase structural genes.  相似文献   

13.
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of DeltahydA, DeltahyaB, and DeltahydA DeltahyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions.  相似文献   

14.
Rhodospirillum rubrum is able to produce H2 during fermentation anaerobically in the dark in two ways, namely through formate hydrogen lyase and through the nitrogenase. After chemotrophic preculture aerobically in the dark formate hydrogen lyase was synthesized after a lag phase, whilst after phototrophic preculture a slight activity was present from the beginning of the anaerobic dark culture. During fermentation metabolism its activity increased noticeably. Hydrogen production through the nitrogenase occurred if the nitrogenase had been activated during phototrophic preculture. It ceased during fermentation metabolism after about 3 1/2 h anaerobic dark culture. The CO insensitive H2 production by the nitrogenase could be partially inhibited by N2. Potential activity of this system, however, remained and could be increased under conditions of nitrogenase induction. It seems therefore possible that synthesis of nitrogenase under N-deficiency can occur during fermentation metabolism in the same way as the formation of the photosynthetic apparatus in order to prepare for subsequent phototrophic metabolism.Abbreviations CAP chloramphenicol - DSM Deutsche Sammlung von Mikroorganismen, Göttingen - FHL formate hydrogen lyase - O.D optical density - PFL pyruvate formate lyase  相似文献   

15.
16.
Rhizobium japonicum CJ1 was capable of growing using formate as the sole source of carbon and energy. During aerobic growth on formate a cytoplasmic NAD+-dependent formate dehydrogenase and ribulose bisphosphate carboxylase activity was demonstrated in cell-free extracts, but hydrogenase enzyme activity could not be detected. Under microaerobic growth conditions either formate or hydrogen metabolism could separately or together support ribulose bisphosphate carboxylase-dependent CO2 fixation. A number of R. japonicum strains defective in hydrogen uptake activity were shown to metabolise formate and induce ribulose bisphosphate carboxylase activity. The induction and regulation of ribulose bisphosphate carboxylase is discussed.Abbreviations hup hydrogen uptake - MOPS 3-(N-morpholino)-propanesulphonate - TSA tryptone soya agar - RuBP ribulose 1,5-bisphosphate - FDH formate dehydrogenase  相似文献   

17.
Methanobacterium ruminantium was shown to possess a formate dehydrogenase which is linked to factor 420 (F420) as the first low-molecular-weight or anionic electron transfer coenzyme. Reduced F420 obtained from the formate dehydrogenase can be further linked to the formation of hydrogen via the previously described F420-dependent hydrogenase reaction, thus constituting an apparently simple formate hydrogenlyase system, or to the reduction of nicotinamide adenine dinucleotide phosphate via F420:nicotinamide adenine dinucleotide phosphate oxidoreductase. The results indicate that hydrogen and formate, the only known energy sources for M. ruminantium and many other methanogenic bacteria, should be essentially equivalent as sources of electrons in the metabolism of this organism.  相似文献   

18.
The potential role played by formate dehydrogenase (FDH) in formate metabolism has been examined by the overexpression of FDH in Arabidopsis thaliana. Three independent transgenic lines were selected and shown to produce elevated amounts of FDH protein with a corresponding elevated FDH activity (2.5-5 fold) over wild-type (WT) plants. Under normal growth conditions, no altered phenotype was observed in these transgenic plants; in growth media supplied with formate, however, significant differences in shoot and root growth, compared to that of WT plants, were observed. WT plants were severely injured if grown in the presence of 16 mmol/L formate, while the transgenic plants were able to grow well. Formate delayed germination of both WT and transgenic seeds at concentrations above 4 mmol/L, but both types of seeds were eventually able to complete more than 95 % germination even at 32 mmol/L formate. Formate markedly inhibited primary root elongation, and its inhibitory action on WT was much stronger than on transgenic plants. Different formate salts affected root elongation similarly, indicating that the formate ion was the major factor inhibiting root growth. Sodium acetate (NaAc), an analogue of formate, also inhibited root elongation, but its action on WT and transgenic plants was the same, indicating that tolerance of transgenic plants to formate toxicity was specific. Transgenic plants showed no significant tolerance to the toxicity of two other one-carbon metabolites, methanol and formaldehyde. A role for FDH in detoxifying formate is proposed.  相似文献   

19.
The hydrogenases and formate dehydrogenases ofEscherichia coli   总被引:2,自引:0,他引:2  
Escherichia coli has the capacity to synthesise three distinct formate dehydrogenase isoenzymes and three hydrogenase isoenzymes. All six are multisubunit, membrane-associated proteins that are functional in the anaerobic metabolism of the organism. One of the formate dehydrogenase isoenzymes is also synthesised in aerobic cells. Two of the formate dehydrogenase enzymes and two hydrogenases have a respiratory function while the formate dehydrogenase and hydrogenase associated with the formate hydrogenlyase pathway are not involved in energy conservation. The three formate dehydrogenases are molybdo-selenoproteins while the three hydrogenases are nickel enzymes; all six enzymes have an abundance of iron-sulfur clusters. These metal requirements alone invoke the necessity for a profusion of ancillary enzymes which are involved in the preparation and incorporation of these cofactors. The characterisation of a large number of pleiotropic mutants unable to synthesise either functionally active formate dehydrogenases or hydrogenases has led to the identification of a number of these enzymes. However, it is apparent that there are many more accessory proteins involved in the biosynthesis of these isoenzymes than originally anticipated. The biochemical function of the vast majority of these enzymes is not understood. Nevertheless, through the construction and study of defined mutants, together with sequence comparisons with homologous proteins from other organisms, it has been possible at least to categorise them with regard to a general requirement for the biosynthesis of all three isoenzymes or whether they have a specific function in the assembly of a particular enzyme. The identification of the structural genes encoding the formate dehydrogenase and hydrogenase isoenzymes has enabled a detailed dissection of how their expression is coordinated to the metabolic requirement for their products. Slowly, a picture is emerging of the extremely complex and involved path of events leading to the regulated synthesis, processing and assembly of catalytically active formate dehydrogenase and hydrogenase isoenzymes. This article aims to review the current state of knowledge regarding the biochemistry, genetics, molecular biology and physiology of these enzymes.  相似文献   

20.
A correlation between the rate of ATP synthesis by F0F1 ATP-synthase and formate oxidation by formate hydrogen lyase (FHL) has been established in inverted membrane vesicles of Escherichia coli JW 136 mutant with double deletions (delta hya/ delta hyb) of hydrogenase 1 and 2 grown anaerobically on glucose in the absence of external electron acceptors (pH 6.5). ATP synthesis was suppressed by H+ -ATPase inhibitors N,N'-dicyclohexylcarbodiimide (DCCD) and sodium azide as well as by the protonophore carbonyl cyanide-m-chlorophenyhydrazone (CCCP). Copper ions inhibited formate-dependent hydrogenase and ATP-synthase activities but did not affect the ATPase activity of vesicles. The maximal rate of ATP synthesis (0.83 microM/min x mg protein) stimulated by K+ ions was determined when sodium formate, ADP and inorganic phosphate were applied simultaneously. The results confirm the assumption about the dual role of hydrogenase 3, formate hydrogen lyase subunit, which is able to couple the reduction of protons to H2 and their translocation through a membrane with chemiosmotic synthesis of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号