首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying the spatial scale at which particular mechanisms influence plant community assembly is crucial to understanding the mechanisms structuring communities. It has long been recognized that many elements of community structure are sensitive to area; however the majority of studies examining patterns of community structure use a single relatively small sampling area. As different assembly mechanisms likely cause patterns at different scales we investigate how plant species co‐occurrence patterns change with sampling unit scale. We use the checkerboard score as an index of species segregation, and examine species C‐score1–sampling area patterns in two ways. First, we show via numerical simulation that the C‐score–area relationship is necessarily hump shaped with respect to sample plot area. Second we examine empirical C‐score–area relationships in arctic tundra, grassland, boreal forest and tropical forest communities. The minimum sampling scale where species co‐occurrence patterns were significantly different from the null model expectation was at 0.1 m2 in the tundra, 0.2 m2 in grassland, and 0.2 ha in both the boreal and tropical forests. Species were most segregated in their co‐occurrence (maximum C‐score) at 0.3 m2 in the tundra (0.54 3 0.54 m quadrats), 1.5 m2 in the grassland (1.2 3 1.2 m quadrats), 0.26 ha in the tropical forest (71 3 71 m quadrats), and a maximum was not reached at the largest sampling scale of 1.4 ha in the boreal forest. The most important finding is that the dominant scales of community structure in these systems are large relative to plant body size, and hence we infer that the dominant mechanisms structuring these communities must be at similarly large scales. This provides a method for identifying the spatial scales at which communities are maximally structured; ecologists can use this information to develop hypotheses and experiments to test scale‐specific mechanisms that structure communities.  相似文献   

2.
3.
We studied the influence of environmental heterogeneity and dispersalprocesses on mesoscale distribution patterns of understorey plants in a 330ha ancient, managed temperate forest area. Similarity matrixregression analysis showed that overall species similarity was affected bysite(the two disjunct halves of the forest area), spatial autocorrelation at the100m scale, edaphic conditions, stand type and stand structure, andthe occurrence of open areas, but not by stand age or topography. Usingautologistic regression we analysed the influence of clumping, site, edaphicconditions, stand composition, open areas, and stand structure on theindividualdistribution patterns of the 60 most abundant species. Only five species haddistributions that were not significantly related to any of the explanatoryvariables. A large number of species showed significant, and often differing,relationships to at least one of the environmental parameters. At least 20species exhibited clumping at the 100 m scale that was independentof the environmental parameters. Principal coordinate analysis and an analysisusing the Ellenberg ecological indicator values suggested that no importantgradients had been overlooked. Dispersal ability (estimated from dispersalmode)and clumping independent of environmental heterogeneity were related. Poordispersers exhibited stronger clumping at the 100 m scale thangooddispersers. Our results support the joint importance of environmentalheterogeneity and dispersal processes in shaping the mesoscale distributionpatterns of forest herbs. We conclude that the distribution of plant species,and species coexistence and species composition in plant communities, cannot beexplained without simultaneously considering environmental heterogeneity anddispersal.  相似文献   

4.
The structure and the spatio-temporal dynamics of the mixed beech–silver fir–Norway spruce old-growth forest of Biogradska Gora (Montenegro) have been analysed at different spatial scales: at the landscape scale, using a high-resolution SPOT5 satellite image and at the stand level with an intensive field survey. This remote-sensing approach has been used to obtain a land cover map in order to define the main vegetation types and to detect the large canopy gaps (>150 m2). The structural characteristics have been delineated in a 50-ha study area in which a regular 120-m grid was superimposed over a 1:10,000 raster map and 30 sampling points have been obtained. The forest is characterized by a high volume of living trees (1029.6 m3 ha? 1) and coarse woody debris (420.4 m3 ha? 1) and by small-scale disturbances (individual trees to small groups) with a low incidence of intermediate disturbances (18 forest canopy gaps>150 m2 over 1230 ha). The two approaches have proved useful to delineate the spatio-temporal dynamics. The Biogradska Gora forest dynamics are dominated by very small-scale processes, which are partially autogenic and partially caused by allogenic factors. The influence of large-scale or intermediate disturbances has shown to be negligible.  相似文献   

5.
Question: Is a mosaic structure apparent in the spatial distribution of trees in old‐growth Abies amabilis forests? Location: Montane forests of the western Cascade Range, Washington, USA. Methods: Maps of tree locations were created for study areas located in two, 300‐year old stands and a single 600‐year old stand. Stand structure parameters were calculated using several subsample quadrats sizes (56.25 ‐ 306.25 m2), which were drawn randomly with replacement at a density of 250 quadrats per ha from the stem maps in the computing environment. Spatial cross‐covariance functions between different canopy strata were estimated using the spline cross‐correlogram. Results: Negative spatial correlation (segregation) between subcanopy tree density and areas of high overstorey occupancy was detected. Understorey and midstorey tree densities were positively spatially correlated. These general trends were apparent across the range of observational scales investigated. Significant spatial correlation between canopy strata was observed at spatial scales of 12 ‐ 44 m and extended to the largest scales in the 600‐year old stand. Conclusion: The observed spatial segregation between canopy strata supports the hypothesis that old A. amabilis forests form fine‐scale structural mosaics. Structural segregation at small scales may be due to competitive interactions as well as exogenous forcing of tree locations (e.g. by mortality due to pathogens or disturbance), however segregation at large scales in the 600‐year old stand is likely due to exogenous factors alone. This study reinforces the idea that horizontal heterogeneity is an emergent property of old‐growth forests.  相似文献   

6.
A spatial model of forest dynamics   总被引:3,自引:0,他引:3  
R. T. Busing 《Plant Ecology》1991,92(2):167-179
Effects of spatial processes on temperate deciduous forest structure and dynamics were investigated with a spatial simulator derived from a forest gap model. The multi-species neighborhood model accounted for competitive interactions and endogenous disturbance in the form of small canopy gaps. Simulated and actual spatial pattern of old-growth stands were compared. The 400 yr simulations produced a pattern scale (0.07–0.2 ha patches) similar to that of an actual stand; simulated pattern intensity was greater than actual intensity, however. Distances to nearest neighbor were somewhat similar for trees in the simulated and actual stands; yet the frequency distributions of distance to nearest neighbor values differed substantially. The simulated stand patterns were generally less random than the actual patterns. Spatial pattern changed markedly during the course of simulated succession. Pattern approached a random dispersion in early succession. Intensity peaked at mid-succession (ca. 150 yr) with a hyperdispersed overstory and a strongly clumped understory. Pattern intensity diminished in late succession as a mixed size structure developed. Old-growth patch size was greater than the neighborhood (or gap) size, suggesting the gap-sized areas do not behave independently.  相似文献   

7.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

8.
Large-scale severe natural disturbance events drive spatial and temporal patterns of forests by altering forest structure, composition, and functions. In the Bavarian Forest National Park in Germany, windthrow events led to large disturbances caused by the European bark beetle (Ips typographus L.). Until recently, it was assumed that at the initial stage of regeneration, trees tend to form a homogeneous stand structure, whereas structural heterogeneity is an attribute of later developmental stages. Yet recent studies provide evidence that under certain conditions structural heterogeneity can arise much earlier in stand development. Here we combined LiDAR data and forest growth modeling based on individual trees to develop a workflow for studying forest development in post-disturbed areas in the upper montane regions of the national park. The current forest structure was derived from LiDAR data of individually detected trees and a set of forest structural attributes were derived. The results served as input to simulate tree development spatio-temporally for a period of 80 years. Several spatial statistics, including landscape and spatial point pattern metrics, were calculated to assess the structural heterogeneity. The results showed that naturally regenerating forests on post-disturbed sites reveal structural heterogeneity already at the early-seral stage. Moreover, a significant portion of the eventual old-growth structural heterogeneity might already be determined in the early successional stages. Our workflow highlights the use of multi-sensor aerial remote sensing to provide detailed structural information useful for the investigation of early-phase forest dynamics.  相似文献   

9.
This work emphasises the usefulness of hemispherical photography for identifying spatial patterns in the tropical rain forest structure. Structural variability was investigated at a local (intra-site) scale, in relation to the forest mosaic, and at a regional (inter-sites) scale, for its implication in forest typology. Four primary forest sites, from 0.6 to 1 ha, were investigated in Central Sumatra, Indonesia.In a first instance, a qualitative analysis of the forest 3-D structure was found to be very helpful in the interpretation of quantitative results related to forest dynamics. The quantitative analysis was undertaken through the assessment of three structural characteristics: (1) the canopy openness (CO), or visible sky as seen from all directions of the hemisphere, (2) the spherical variance (SV), which quantifies the spatial dispersion of gaps and, (3) the plant area index (Lp), defined as half the surface area of canopy elements per unit ground area. At the local scale, maps of the CO values gave an indication about disturbance location and extent, providing an interesting document for studies on forest dynamics. At the regional scale, between-sites comparisons of CO, SV and Lp values added new information on forest structural differences when compared to dendrometric measurements. These results emphasised the fact that rain forest may exhibit high structural variability, even within a same bioclimatic region and a narrow altitude range. Hemispherical photographs could be a quick means of further investigating this spatial variability and it's relation to physical environment, thus providing information that is crucial for the refining of forest typology in the area.  相似文献   

10.
Spatial pattern and process in forest stands within the Virginia piedmont   总被引:1,自引:0,他引:1  
Abstract. Question: Underlying ecological processes have often been inferred from the analysis of spatial patterns in ecosystems. Using an individual‐based model, we evaluate whether basic assumptions of species’life‐history, drought‐susceptibility, and shade tolerance generate dynamics that replicate patterns between and within forest stands. Location: Virginia piedmont, USA. Method: Model verification examines the transition in forest composition and stand structure between mesic, intermediate and xeric sites. At each site, tree location, diameter, and status were recorded in square plots ranging from 0.25 to 1.0 ha. Model validation examines the simulated spatial pattern of individual trees at scales of 1–25 m within each forest site using a univariate Ripley's K function. Results: 7512 live and dead trees were surveyed across all sites. All sites exhibit a consistent, significant shift in pattern for live trees by size, progressing from a clumped understorey (trees ± 0.1 m in diameter) to a uniform overstorey (trees > 0.25 m). Simulation results reflect not only the general shift in pattern of trees at appropriate scales within sites, but also the general transition in species composition and stand structure between sites. Conclusions: This shift has been observed in other forest ecosystems and interpreted as a result of competition; however, this hypothesis has seldom been evaluated using simulation models. These results support the hypothesis that forest pattern in the Virginia piedmont results from competition involving species’life‐history attributes driven by soil moisture availability between sites and light availability within sites.  相似文献   

11.
Light competition and interspecific differences in shade tolerance are considered key determinants of forest stand structure and dynamics. Specifically two main stand diameter distribution types as a function of shade tolerance have been proposed based on empirical observations. All-aged stands of shade tolerant species tend to have steeply descending, monotonic diameter distributions (inverse J-shaped curves). Shade intolerant species in contrast typically exhibit normal (unimodal) tree diameter distributions due to high mortality rates of smaller suppressed trees. In this study we explore the generality of this hypothesis which implies a causal relationship between light competition or shade tolerance and stand structure. For this purpose we formulate a partial differential equation system of stand dynamics as a function of individual tree growth, recruitment and mortality which allows us to explore possible individual-based mechanisms--e.g. light competition-underlying observed patterns of stand structure--e.g. unimodal or inverse J-shaped equilibrium diameter curves. We find that contrary to expectations interspecific differences in growth patterns can result alone in any of the two diameter distributions types observed in the field. In particular, slow growing species can present unimodal equilibrium curves even in the absence of light competition. Moreover, light competition and shade intolerance evaluated both at the tree growth and mortality stages did not have a significant impact on stand structure that tended to converge systematically towards an inverse J-shaped curves for most tree growth scenarios. Realistic transient stand dynamics for even aged stands of shade intolerant species (unimodal curves) were only obtained when recruitment was completely suppressed, providing further evidence on the critical role played by juvenile stages of tree development (e.g. the sampling stage) on final forest structure and composition. The results also point out the relevance of partial differential equations systems as a tool for exploring the individual-level mechanisms underpinning forest structure, particularly in relation to more complex forest simulation models that are more difficult to analyze and to interpret from a biological point of view.  相似文献   

12.
Using a 0.78 ha transect in an undisturbed forest in French Guiana, we sought a typology of forest mosaic units (5 × 5 m quadrats) based on diameter distribution with three main classes of trees ≥5 cm DBH. We identified nine basic structural types corresponding to potential stages of a sequence of development from colonization of gaps to filling of the vertical space among three layers. Two enumerations made over a 10-year interval (1981 and 1991), enabled a transition matrix to be estimated. This summarizes movement between structural types over the period and enables ideas on dynamics to be discussed.  相似文献   

13.
Question: This study evaluates how fire regimes influence stand structure and dynamics in old‐growth mixed conifer forests across a range of environmental settings. Location: A 2000‐ha area of mixed conifer forest on the west shore of Lake Tahoe in the northern Sierra Nevada, California. Methods: We quantified the age, size, and spatial structure of trees in 12 mixed conifer stands distributed across major topographic gradients. Fire history was reconstructed in each stand using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing the fire history with the age, size, and spatial structure of trees in a stand. Results: There was significant variation in species composition among stands, but not in the size, age and spatial patterning of trees. Stands had multiple size and age classes with clusters of similar aged trees occurring at scales of 113 ‐ 254 m2. The frequency and severity of fires was also similar, and stands burned with low to moderate severity in the dormant season on average every 9–17 years. Most fires were not synchronized among stands except in very dry years. No fires have burned since ca. 1880. Conclusions: Fire and forest structure interact to perpetuate similar stand characteristics across a range of environmental settings. Fire occurrence is controlled primarily by spatial variation in fuel mosaics (e.g. patterns of abundance, fuel moisture, forest structure), but regional drought synchronizes fire in some years. Fire exclusion over the last 120 years has caused compositional and structural shifts in these mixed conifer forests.  相似文献   

14.
ABSTRACT Capercaillie (Tetrao urogallus) is a large, endangered forest grouse species with narrow habitat preferences and large spatial requirements that make it susceptible to habitat changes at different spatial scales. Our aim was to evaluate the relative power of variables relating to forest versus landscape structure in predicting capercaillie occurrence at different spatial scales. We investigated capercaillie-habitat relationships at the scales of forest stand and forest-stand mosaic in 2 Swiss regions. We assessed forest structure from aerial photographs in 52 study plots each 5 km2. We classified plots into one of 3 categories denoting the observed local population trend (stable, declining, extinct), and we compared forest structure between categories. At the stand scale, we used presence-absence data for grid cells within the plots to build predictive habitat models based on logistic regression. At this scale, habitat models that included only variables relating to forest structure explained the occurrence of capercaillie only in part, whereas variables selected by the models differed between regions. Including variables relating to landscape features improved the models significantly. At the scale of stand mosaic, variables describing forest structure (e.g., mean canopy cover, proportion of open forest, and proportion of multistoried forest) differed between plot categories. We conclude that small-scale forest structure has limited power to predict capercaillie occurrence at the stand scale, but that it explains well at the scale of the stand mosaic. Including variables for landscape structure improves predictions at the forest-stand scale. Habitat models built with data from one region cannot be expected to predict the species occurrence in other regions well. Thus, multiscale approaches are necessary to better understand species-habitat relationships. Our results can help regional authorities and forest-management planners to identify areas where suitable habitat for capercaillie is not available in the required proportion and, thus, where management actions are needed to improve habitat suitability.  相似文献   

15.
In 1998, we measured the effects of Hurricane Georges after it passed over long‐term research sites in Puerto Rican dry forest. Our primary objectives were to quantify hurricane effects on forest structure, to compare effects in a large tract of forest versus a series of nearby forest fragments, to evaluate short‐term response to hurricane disturbance in terms of mortality and sprouting, and to assess the ability of hurricanes to maintain forest structure. We sampled damage from 33 plots (1.3 ha) across a 3000‐ha tract of forest as well as in 19 fragments. For stems with 2.5‐cm minimum diameter, 1004 stems/ha (12.4%) suffered structural damage, while 69 percent of the undamaged stems were at least 50 percent defoliated. Basal area lost to structural damage equaled 4.0 m2/ha (22%) in south‐facing native forests. Structural damage and defoliation increased with stem diameter and were more common in certain dry forest species. South‐facing forests and those on ridgetops incurred more damage than north‐facing forests or those comprised primarily of introduced species. Stem mortality was only 2 percent of all stems after 9 mo. Structural damage did not necessarily result in stem mortality. Hurricane‐induced mortality was not associated with stem height or diameter, but was ten times greater than background mortality. Basal sprouting was proportional to the amount of structural damage incurred in a stand. Forest fragments experienced the same patterns of hurricane effects as the reference forest. The low, dense structure of Caribbean dry forest can be maintained by hurricane damage to larger stems and induction of basal sprouting to generate multistemmed trees.  相似文献   

16.
A theoretical framework and conceptual model for temporal stability of forest tree-species composition was developed based on a synthesis of existing studies. The model pertains primarily to time periods of several tree lifetimes (several hundred to a few thousand years) at the neighborhood and stand spatial scales (0.01–10 ha), although a few extensions to the landscape scale are also made. The cusp catastrophe was chosen to illustrate compositional dynamics at the stand level for jack pine, northern hardwood, and white pine forests in the Great Lakes Region of the United States and for tropical rainforests in the northern Amazon basin. The models feature a response surface (degree of dominance by late-successional species) that depends on two variables: type of neighborhood effects of the dominant tree species and severity of disturbances. Neighborhood effects are processes that affect the chance of a species replacing itself at the time of disturbance (they can be positive, neutral, or negative) and are of two types: overstory–undestory effects, such as the presence of advanced reproduction; and disturbance-activated effects, such as serotinous seed rain. Disturbance severity is the proportion of trees killed during a disturbance. Interactions between neighborhood effects and disturbance severity can lead to either punctuated stability (dramatic but infrequent change in composition, in those forests dominated by species with positive neighborhood effects) or succession (continuous change, in those forests dominated by species with neutral-negative neighborhood effects). We propose that neighborhood effects are a major organizing factor in forest dynamics that provide a link across spatial scales between individual trees and disturbance/patch dynamics at the stand and landscape scales. Received 23 June 1998; accepted 16 December 1998.  相似文献   

17.
To maintain biodiversity in managed forests we must understand how forestry affects various organisms across a wide range of spatial and temporal scales. We compared landscape structure, forest structure, and species richness and abundance of epiphytic macrolichens in three pairs of natural and managed boreal forest landscapes. Study landscapes (2500 ha) were located within and adjacent to three of the largest forest reserves in Sweden (Reivo, Muddus, Jelka). The structural heterogeneity within landscapes was higher in managed forests whereas within-stand structural heterogeneity was higher in natural landscapes. Species richness of macrolichens at the stand level (sample plot) was 23% higher in natural forests but there was no difference at the landscape level. Most (86%) of the common species were more frequent in natural landscapes. Lichen abundance (estimated by lichen litter) was two times higher in natural than in managed landscapes, 5.6 and 2.7 kg ha-1 forest (pooled data), respectively. Both species richness and abundance were negatively related to cutting level (number and basal area of cut stumps) and positively related to stand variables (stand age, stem density and basal area). Lichen-rich forest stands were more numerous but covered a smaller area and were more isolated in managed landscapes. This may in turn have important consequences for dispersal of lichen propagules to second-growth forests. In conclusion, the results suggest that effects of forestry on epiphyte diversity and abundance are strongly related to the spatial scale (stand or landscape). To enhance biodiversity in managed forests we must increase structural heterogeneity at the whole range of spatial and temporal scales.  相似文献   

18.
Beta多样性通常指群落在时间和空间上物种组成的差异, 包括物种周转组分和物种丰富度差异组分。驱动beta多样性格局形成的生态过程决定了群落的时空动态, 然而关于beta多样性及其两个组分格局形成的驱动力还存在较多争议。以往研究表明, beta多样性的格局存在取样尺度的依赖性, 驱动其形成的生态过程在不同取样尺度下的相对重要性也随之改变。本研究以哀牢山亚热带中山湿性常绿阔叶林20 ha动态监测样地为研究对象, 在不同取样尺度上, 将样方间的Bray-Curtis指数分解为物种周转组分和物种丰富度差异组分, 通过典范冗余分析和方差分解的方法揭示环境过滤和扩散限制对于beta多样性及其两个组分格局形成的相对重要性及其尺度依赖性。结果表明: (1) beta多样性、物种周转组分和物种丰富度差异组分均随取样尺度的增大而减小。在不同取样尺度下, 物种周转组分对于beta多样性的贡献始终占主导地位。(2)随着取样尺度的增大, 环境过滤驱动beta多样性格局形成的相对重要性逐渐增加, 而扩散限制的相对重要性逐渐降低。本研究进一步证实了取样尺度在beta多样性格局形成及其驱动力定量评价中的重要性, 今后的研究需要进一步解析上述尺度效应的形成机制。  相似文献   

19.
In the past 30 years, many stand structural attributes (SSAs) have been suggested and structural indices have been developed to describe the complex structure of forests. Most studies, however, have explored the potential and limits of structural measures to quantify forest structures by applying multiple measures to one stand or few measures to several stands. However, the interdependencies of multiple structural attributes across many stands of different forest management types and developmental stages have not yet been explored. Using 20 structural attributes and 124 completely inventoried 1 ha sized stands we tested to what extent structural characteristics reflect different stand types and management intensities, and how these characteristics change over time. We found that single SSAs do not show the clear gradients that they were intended to reflect, suggesting that stand structure should be described by multiple structural attributes, and that these should represent different structural aspects (including vertical, and horizontal heterogeneity, density, and diversity). A principal component analysis showed that combining several SSAs, allowed us to distinguish between stand types. The structure of mature stands remained rather constant over the observed period of about 6 years, while that of young stands changed more rapidly due to ingrowth and mortality. The older the stands, the less the large trees contributed to stand growth relative to their size. We conclude that multiple stand structural attributes are needed to characterise stand types, management effects and to explain stand productivity.  相似文献   

20.
A permanent plot of 30 ha (600 × 500 m2) was established for long-term ecological research on biodiversity and forest functioning in a tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats. This paper gives the results of the first census of trees in the 30 ha plot. All trees 30 cm gbh were permanently tagged with sequentially numbered aluminium tags and their girth measured. 148 tree species (in 120 genera and 49 families) were enumerated in a total sample of 13,393 individuals. Species diversity, density and dispersion patterns were determined. The mean species richness, density and basal area per hectare were 65 species, 446 stems and 36.26 m2 respectively. The Sorensen similarity index for thirty 1-ha subplots varied from 0.7 to 0.9, indicating the homogeneity in species composition of the stand. The pronounced species hierarchy has resulted in the dominance of four species that occupy four different forest storeys: Drypetes longifolia (lower storey) Reinwardtiodendron anamallayanum (middle storey), Poeciloneuron indicum (upper storey) and Dipterocarpus indicus (emergent). The forest was dominated by Euphorbiaceae in terms of richness (18 species) and abundance of species (3788 stems), and Dipterocarpaceae based on the contribution to basal area (18.4%). Species richness and density decreased with increasing girth-class. Girth class frequency of the stand exhibited an expanding population of trees. Twenty-nine tree species, analysed for spatial dispersion at 1-ha scale, exhibited both clumped and uniform patterns, except Vateria indica which was randomly distributed in one hectare. Repeat census scheduled for subsequent years, will elucidate the behaviour of the individual species and the population dynamics of the tree flora and will be useful for forest conservation and management. It will also help to monitor human activity within this forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号