首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In our previous study vesamicol, an inhibitor of the acetylcholine transporter of the cholinergic vesicles, inhibited veratridine-evoked external Ca2+-dependent acetylcholine release from striatal slices but did not influence acetylcholine release observed in Ca2+-free medium (4). Here we examined if the effect of veratridine on membrane potential, Ca2+ uptake, and intracellular Ca2+ concentration of synaptosomes was altered by vesamicol in parallel with the inhibition of acetylcholine release. The depolarizing effect of 10 M veratridine (from 67±2.3 mV resting membrane potential to 50.7±2.5 mV) was not significantly influenced by vesamicol (1–20 M). Vesamicol (1–20 M) had no effect on either the overall curve of the veratridine-evoked45Ca2+ uptake or the amount of Ca2+ taken up by synaptosomes. Veratridine caused a rise in intrasynaptosomal Ca2+ concentration as measured by Fura2 fluorescence, and the same increase both in characteristics and in magnitude was observed in the presence of vesamicol (20 M). The K+-evoked (40 mM) increase of Ca2+ uptake and of intracellular calcium concentration were also unaltered by vesamicol. In high concentration (50 M) vesamicol inhibited both the fall in membrane potential and the elevated Ca2+ uptake by veratridine, indicating a possible nonspecific effect on potential-dependent Na+ channels at this concentration. Vesamicol, in lower concentration (20 M) when neither of the above parameters was changed, completely prevented veratridine-evoked increase of [14C]acetylcholine release. This was observed only when vesamicol was present in the media throughout the experiment after loading the preparation with [14C]choline. The results suggest that vesamicol does not interfere with veratridine-induced changes in isolated nerve terminals other than with the release of acetylcholine, thus further supporting the involvement of a vesamicol-sensitive vesicular transmitter pool in Ca2+-dependent veratridine-elicited acetylcholine release.  相似文献   

2.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

3.
Summary The K+-stimulated, ouabain-insensitive ATPase activity present in vesicles of microsomal fractions from hog gastric mucosa can be demonstrated in fresh preparations by adding Ca2+ (M range) to the incubation medium. Ca2+ effect is similar but not additive to the effect of gramicidin or freezing. High Ca2+ concentrations (1 mM) produce an inhibotory effect on the K+-stimulated ATPase activity. This effect, is not seen in the presence of gramicidin. Calcium increases the magnitude of ATP-driven H+ uptake in vesicles exposed to K+ for periods of time up to 60 min. At longer times of exposure (120 min) the response does not differ from controls. It is concluded that Ca2+ at low concentrations (m range) enhances the K+ permeability of the vesicular membrane. At higher concentrations (mm range), Ca2+ becomes inhibitory to the K+ permeability. A role for Ca2+ as a second messenger in stimulus-secretion coupling in the parietal cell is discussed.  相似文献   

4.
The effect of nuclear Ca2+ uptake inhibitors on the Ca2+-activated DNA fragmentation in rat liver nuclei was investigated. The addition of Ca2+ (40 M) into the reaction mixture containing liver nuclei in the presence of 2.0 mM ATP caused a remarkable increase in nuclear DNA fragmentation. This Ca2+-activated DNA fragmentation was not seen in the absence of ATP, because nuclear Ca2+ uptake is not initiated without ATP addition. Moreover, the presence of various reagents (10 M arachidonic acid, 2.0 mM NAD+, 10 M zinc sulfate and 0.2 mM N-ethylmaleimide), which could inhibit Ca2+-ATPase activity and Ca2+ uptake in the nuclei, produced a significant inhibition of the Ca2+-activated DNA fragmentation in the nuclei. The results show that the Ca2+-activated DNA fragmentation is involved in the uptake of Ca2+ by the nuclei, suggesting a role of Ca2+ transport system in the regulation of liver nuclear functions.  相似文献   

5.
Summary The permeability properties of the plasma membrane of intact rod outer segments purified from bovine retinas (ROS) were studied with the aid of the optical probe neutral red as described in the companion paper. The following observations were made: (1) Electrical shunting of ROS membranes greatly stimulated Na+ and K+ transport, suggesting that this transport reflects Na+ and K+ currents, respectively. The dissipation of a Na+ gradient across the plasma membrane occurred with a half-time of 30 sec at 25°C. (2) The Na+ permeability was progressively inhibited when the external Ca2+ concentration was raised from 1 m to 20mm. A similar Ca2+ dependence was observed for H+ and Li+ transport. The Na+ permeability was not affected when the total internal Ca2+ content of ROS was varied between 0.1 mol Ca2+/mol rhodopsin and 7 mol Ca2+/mol rhodopsin, or when the free internal Ca2+ concentration was varied between 0.1 and 50 m. (3) The K+ permeability was progressively stimulated when the external Ca2+ concentration was raised from 0.001 to 1 m, whereas a further increase to 20mm was without effect. A similar Ca2+ dependence was observed for Rb+ and Cs+ transport. (4) At an external Ca2+ concentration in the micromolar range the rate of transport decreased in the order: Na+>K+=H+>Cs+>Li+. (5) Na+ fluxes depended in a sigmoidal way on the external Na+ concentration, suggesting that sodium ions move in pairs. The concentration dependence of uniport Na+ transport and that of Na+-stimulated Ca2+ efflux (exchange or antiport transport) were very similar.  相似文献   

6.
To assess the mechanism by which mitochondrial permeability transition (MPT) is induced by the nonpolar carboxylic acids, we investigated the effects of flufenamic acid (3-trifluoromethyl diphenylamine-2-carboxylic acid, FA) on mitochondrial respiration, electrical transmembrane potential difference (), osmotic swelling, Ca2+ efflux, NAD(P)H oxidation and reactive oxygen species (ROS) generation. Succinate-energized isolated rat liver mitochondria incubated in the absence or presence of 10 M Ca2+, 5 M ruthenium red (RR) or 1 M cyclosporin A (CsA) were used. The dose response-curves for both respiration release and dissipation were nearly linear, presenting an IC50 of approximately 10 M and reaching saturation within 25-50 M, indicating that FA causes mitochondrial uncoupling by a protonophoric mechanism. Within this same concentration range FA showed the ability to induce MPT in energized mitochondria incubated with 10 M Ca2+, followed by dissipation and Ca2+ efflux, and even in deenergized mitochondria incubated with 0.5 mM Ca2+. ADP, Mg2+, trifluoperazine (TFP) and N-ethylmaleimide (NEM) reduced the extent of FA-promoted swelling in energized mitochondria by approximately one half, whereas dithiothreitol (DTT) slightly enhanced it. NAD(P)H oxidation and ROS generation (H2O2 production) by mitochondria were markedly stimulated by FA; these responses were partly prevented by CsA, suggesting that they may be implicated as both a cause and effect of FA-induced MPT. FA incubated with mitochondria under swelling assay conditions caused a decrease of approximately 40% in the content of protein thiol groups reacting with 5,5-dithiobis(2-nitrobenzoic acid) (DTNB). The present results are consistent with a ROS-intermediated sensitization of MPT by a direct or indirect FA interaction with inner mitochondrial membrane at a site which is in equilibrium with the NAD(P)H pool, namely thiol groups of integral membrane proteins.  相似文献   

7.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK m of 93 m. Support of H+ uptake andP i liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K i , 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP i liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK i , 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK i , 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas.  相似文献   

8.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

9.
Summary Addition of 0.1–0.3 m A23187, a divalent cation ionophore, to human erythrocytes suspended in a 1.0mm 45Ca2+-containing buffer results in a small ( two fold) increase in [Ca2+] i , a significant decrease in osmotic fragility, and a decrease in intracellular K+ (100 mmoles/liter of cells to 70 mmoles/liter cells) without significant alteration of intracellular [Na+]. This decrease in [K+] i is associated with a significant decrease in packed cell volume and correlates directly with the observed alteration is osmotic fragility. Increasing extracellular K+ to 125mm prevents the A23187-induced changes in osmotic fragility, K+ content and cell volume, but does not prevent the ionophore-induced uptake of45Ca2+. Addition of 0.1–0.3 m A23187 to toad erythrocytes leads to an increase in45Ca2+ uptake comparable to that observed in human erythrocytes, but does not alter osmotic fragility, cell volume or K+ content. Higher concentrations of ionophore (3.0–10.0 m) cause a 30- to 50-fold increase in45Ca2+ uptake and concomitant change in K+ content, cell volume and osmotic fragility. These changes in cell properties can be prevented by increasing extracellular [K+] to 90mm. The difference in sensitivity of the two cell types to A23187 is attributed to the presence of additional intracellular calcium pools within toad erythrocytes that prevent an increase in cytoplasmic Ca2+ until Ca2+ uptake is increased substantially at the higher concentrations of A23187.  相似文献   

10.
We have studied Cd2+-induced effects on mitochondrial respiration and swelling in various media as a function of the [Cd2+] in the presence or absence of different bivalent metal ions or ruthenium red (RR). It was confirmed by monitoring oxygen consumption by isolated rat liver mitochondria that, beginning from 5 M, Cd2+ decreased both ADP and uncoupler-stimulated respiration and increased their basal respiration when succinate was used as respiratory substrate. At concentrations higher than 5 M, Cd2+ stimulated ion permeability of the inner mitochondrial membrane, which was monitored in this study by swelling of both nonenergized mitochondria in 125 mM KNO3 or NH4NO3 medium and succinate-energized mitochondria incubated in a medium containing 25 mM K-acetate and 100 mM sucrose. We have found substantial changes in the above-mentioned Cd2+ effects on mitochondria treated in sequence with 100 M of Ca2+, Sr2+, Mn2+ or Ba2+(Me2+) and 7.5 M RR, as well as the alterations in Cd2+ action on the uptake of 137Cs+ by succinate-energized mitochondria in the presence or absence of valinomycin in acetate medium (50 mM Tris-acetate and 140 mM sucrose) with or without Ca2+ or RR. The evidence obtained indicate that Ca2+ exhibits a synergestic action on all Cd2+ effects examined, whereas Sr2+ and Mn2+, conversely, are antagonistic. In the presence of RR, the Cd2+ effects on respiration [stimulation of State 4 respiration and inhibition of 2,4-dinitrophenol (DNP)-uncoupled respiration] still exist, but are observed at concentrations of cadmium more than one order higher; the inhibition of State 3 respiration by Cd2+, conversely, takes place under even lower cadmium concentrations than those determined without RR in the medium. In addition, RR added simultaneously with cadmium in the incubation medium prevents any swelling in the nitrate media, but induces an increment both in Cd2+-stimulated swelling and 137Cs+ (analog of K+) uptake in the acetate media. For the first time, we have shown that Cd2+-induced swelling in all media under study is susceptible to cyclosporin A (CSA), a high-potency inhibitor of the mitochondrial permeability transition (PT) pore. The observations are interpreted in terms of a dual effect of cadmium on respiratory chain activity and permeability transition.  相似文献   

11.
The role of the adenine nucleotide translocase on Ca2+ homeostasis in mitochondria from brown adipose tissue was examined. It was found that in mitochondria incubated with 50 M Ca2+, ADP was not needed to retain the cation, but it was required for strengthening the inhibitory effect of cyclosporin on membrane permeability transition as induced by menadione. In addition, carboxyatractyloside was unable to promote matrix Ca2+ release, even though it inhibits the ADP exchange reaction. However, when the Ca2+ concentration was increased to 150 M, carboxyatractyloside did induce Ca2+ release, and ADP favored Ca2+ retention. Determination of cardiolipin content in the inner membrane vesicles showed a greater concentration in brown adipose tissue mitochondria than that found in kidney mitochondria. It is suggested that the failure of the adenine nucleotide translocase to influence membrane permeability transition depends on the lipid composition of the inner membrane.  相似文献   

12.
Summary Calcium conducting channels were studied in blebs of sarcoplasmic reticulum described by Stein & Palade (1988). The calcium channels had at least three conductance states (70 pS, 50 pS and 37 pS) and were weakly selective for calcium ions, with a permeability ratio Ca2+ to K+ of about 3.4. The open probability of the channel was strongly voltage dependent, decreasing at positive membrane voltages. 10 m ryanodine and 5 m ruthenium red had no effect on this channel; neither did millimolar concentrations of ATP, Mg2+, caffeine, and Ca2+, implying that the calcium conducting channels are not ryanodine receptors. Several calcium pump inhibitors—namely, vanadate, AlF 4 , reactive red 120, and cyclopiazonic acid—had obvious effects on the calcium conducting channels, suggesting that the calcium conducting channel of SR membrane blebs is some form of the SR calcium pump.We thank the National Science Foundation for steadfast support.We thank Drs. F. Cohen, A. Fox, R. Levis and E. Rios for much useful help and criticism and Dr. G. Inesi for sending us his paper while in press.  相似文献   

13.
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (>100 M), and preincubation with 2 M -conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2–4 min. Although 2 M tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.  相似文献   

14.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

15.
Summary We studied the mechanism of K++ channel activation by minoxidil-sulfate (MxSO4) in fused Madin-Darby canine kidney (MDCK) cells. Patch-clamp techniques were used to assess single channel activity, and fluorescent dye techniques to monitor cell calcium. A Ca+2+-dependent inward-rectifying K++ channel with slope conductances of 53±3 (negative potential range) and 20±3 pS (positive potential range) was identified. Channel activity is minimal in cell-attached patches. MxSO4 initiated both transient channel activation and an increase of intracellular Ca+2+ (from 94.2±9.1 to 475±12.6 nmol/liter). The observation that K++ channel activity of excised inside-out patches was detected only at Ca+2+ concentrations in excess of 10 mol/liter suggests the involvement of additional mechanisms during channel activation by MxSO4.Transient K++ channel activity was also induced in cell-attached patches by 10 mol/liter of the protein kinase C activator 1-oleoyl-2-acetyl-glycerol (OAG). OAG (10 mol/liter in the presence of 1.6 mmol/liter ATP) increased the Ca+2 sensitivity of the K+ channel in inside-out patches significantly by lowering the K mfor Ca+2 from 100 mol/liter to 100 nmol/liter. The channel activation by OAG was reversed by the protein kinase inhibitor H8. Staurosporine, a PKC inhibitor, blocked the effect of MxSO4 on K+ channel activation. We conclude that MxSO4-induced K+ channel activity is mediated by the synergistic effects of an increase in intracellular Ca+2 and a PKC-mediated enhancement of the K+ channel's sensitivity to Ca+2.A. Schwab was recipient of a Feodor-Lynen-Fellowship from the Alexander von Humboldt-Stiftung. This work was supported by NIH grant DK 17433. The authors thank Nikon Instruments Partners in Research Program for their support and generous use of equipment during the course of this study. Minoxidil-sulfate was kindly provided by Upjohn, Kalamazoo, MI.  相似文献   

16.
Pig coronary artery cultured smooth muscle cells were skinned using saponin. In the presence of an ATP-regenerating system and oxalate, the skinned cells showed an ATP-dependent azide insensitive Ca2+-uptake which increased linearly with time for >1 h. The Ca2+-uptake occurred with Km values of 0.20±0.03 M for Ca2+ and 400±34 M for MgATP2–. Thapsigargin and cyclopiazonic acid inhibited this uptake with IC50 values of 0.13±0.02 and 0.56±0.04 M, respectively. These properties of SR Ca2+-pump are similar to those reported for membrane fractions isolated from fresh smooth muscle of coronary artery and other arteries. However, optimum pH of the uptake in the skinned cells (6.2) was lower than that reported previously using isolated membranes (6.4–6.8).Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum - PM plasma membrane - CPA cyclopiazonic acid - DTT dithiothreitol  相似文献   

17.
González  L.  Nekrassov  V.  Castell  A.  Sitges  M. 《Neurochemical research》1997,22(2):189-199
The effects of melittin at increasing concentrations on: [3H]GABA release from mouse brain synaptosomes; on the radioactivity released from [3H]arachidonic acid labeled synaptosomal membranes; on synaptosomes ultrastructure and on the leakage of the cytoplasmic marker, lactate-dehydrogenase (LDH) was investigated. Melittin 0.3, 1, 3, 7, and 10 M progressively increases [3H]GABA release, but the efficacy of melittin is decreased when the amount of tissue exposed to a constant concentration of the toxin increases. The release of [3H]GABA induced by melittin below 3 M is Ca2+ dependent, but not that induced by the higher concentrations. The Ca2+ dependent fraction of the [3H]GABA released by 0.3 M melittin is selectively inhibited by 10 M quinacrine and 1 M nordihydroguaiaretic acid (NDGA) and facilitated by 3 M indomethacin, whereas the Ca2+ independent fraction of the [3H]GABA released by melittin is not. In the presence of Ca2+, melittin 0.3, 1 and 10 M progressively increases [3H]arachidonic acid release over control release, but the effectiveness of melittin is also decreased as the amount of tissue increases. No apparent changes in synaptosomes ultrastructure are observed in 0.3 M treated synaptosomes, but a noticeable disorganization is produced in 10 M melittin-treated synaptosomes, independently on the presence of external Ca2+. LDH activity only increases over control activity in the supernatant solutions of 10 M melittin treated synaptosomes, also in a Ca2+ independent manner. Our interpretation of these results is that the Ca2+-dependent, pharmacologic sensitive component of melittin-induced release of [3H]GABA, unmasked when 0.3 M melittin was used, involves the activation of a Ca2+-dependent type of membrane PLA2. The Ca2+-independent release of [3H]GABA is in contrast, highly probable to be due to the membrane perturbation produced by complex melittin/lipid interactions.  相似文献   

18.
Summary We studied the effects of lanthanum (La3+) on the release of 3H-norepinephrine(3H-NE), intracellular Ca2+ concentration, and voltage clamped Ca2+ and K+ currents in cultured sympathetic neurons. La3+ (0.1 to 10 m) produced concentration-dependent inhibition of depolarization induced Ca2+ influx and 3H-NE release. La3+ was more potent and more efficacious in blocking 3H-NE release than the Ca2+-channel blockers cadmium and verapamil, which never blocked more than 70% of the release. At 3 m, La3+ produced a complete block of the electrically stimulated rise in intracellular free Ca2+ ([Ca2+] i ) in the cell body and the growth cone. The stimulation-evoked release of 3H-NE was also completely blocked by 3 m La3+. However, 3 m La3+ produced only a partial block of voltage clamped Ca2+ current (I Ca). Following La3+ (10 m) treatment 3H-NE release could be evoked by high K+ stimulation of neurons which were refractory to electrical stimulation. La3+ (1 m) increased the hyperpolarization activated, 4-aminopyridine (4-AP) sensitive, transient K+ current (I A ) with little effect on the late outward current elicited from depolarized holding potentials. We conclude that the effective block of electrically stimulated 3H-NE release is a result of the unique ability of La3+ to activate a stabilizing, outward K+ current at the same concentration that it blocks inward Ca2+ current.  相似文献   

19.
In isolated synaptosomes from rat brain, 100 M antimycin A and 10 M oxamic acid inhibit the32Pi-labeling of phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylinositol-4-phosphate (PIP) by 90% and 95–99% respectively. 10 mM sodium fluoride inhibits the labeling by 50–60% and 10 mM A23187 inhibits the labeling by 63–70%. Phospholipase A2 inhibits the labeling of PIP2 and PIP by 93–94% and stimulates their degradation by 84–92%. Depolarization of synaptosomes with 75 mM K+ or 100 M veratrine decreases the labeling of PIP2 and PIP by 66–74%. The decreased labeling results in large part from the Ca2+-dependent degradation of32P-labeled PIP2 and PIP as shown by pulse-chase experiments in which PIP2 and PIP were prelabeled with32Pi. Depolarization of synaptosomes results in the stimulation of45Ca2+ uptake with the concomitant hydrolysis of PIP and PIP2. Addition of 1 mM Ca2+ accounts for 25% of the enhanced degradation whereas depolarization with 75 mM K+ accounts for 75% of the enhanced degradation of PIP2 and PIP. Depolarization with 100 mM veratrine results in a 223% increase in inositol trisphosphate as evidenced by stimulation of45Ca2+ uptake. EGTA (10mM) and Mg2+ (5–10 mM) inhibit the degradation of PIP and PIP2 and counteract the action of 1 mM Ca2+. Our data demonstrate that45Ca2+, Mg2+, and membrane depolarization play an important role in the turnover of membrane phosphatidylinositols.Abbreviations ATP adenosine triphosphate - Pi inorganic orthophosphate - PIP phosphatidylinositol-4-phosphate - PIP2 phosphatidylinositol-4,5,-bisphosphate - IP3 inositol-1,4,5-trisphosphate  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号