首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examined the molecular and functional characterization of choline uptake into cultured rat cortical astrocytes. Choline uptake into astrocytes showed little dependence on extracellular Na+. Na+-independent choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 35.7 +/- 4.1 microm and a maximal velocity (Vmax) of 49.1 +/- 2.0 pmol/mg protein/min. Choline uptake was significantly decreased by acidification of the extracellular medium and by membrane depolarization. Na+-independent choline uptake was inhibited by unlabeled choline, acetylcholine and the choline analogue hemicholinium-3. The prototypical organic cation tetrahexylammonium (TEA), and other n-tetraalkylammonium compounds such as tetrabutylammonium (TBA) and tetrahexylammonium (THA), inhibited Na+-independent choline uptake, and their inhibitory potencies were in the order THA > TBA > TEA. Various organic cations, such as 1-methyl-4-tetrahydropyridinium (MPP+), clonidine, quinine, quinidine, guanidine, N-methylnicotinamide, cimetidine, desipramine, diphenhydramine and verapamil, also interacted with the Na+-independent choline transport system. Corticosterone and 17beta-estradiol, known inhibitors of organic cation transporter 3 (OCT3), did not cause any significant inhibition. However, decynium22, which inhibits OCTs, markedly inhibited Na+-independent choline uptake. RT-PCR demonstrated that astrocytes expressed low levels of OCT1, OCT2 and OCT3 mRNA, but the functional characteristics of choline uptake are very different from the known properties of these OCTs. The high-affinity Na+-dependent choline transporter, CHT1, is not expressed in astrocytes as evidenced by RT-PCR. Furthermore, mRNA for choline transporter-like protein 1 (CTL1), and its splice variants CTL1a and CTL1b, was expressed in rat astrocytes, and the inhibition of CTL1 expression by RNA interference completely inhibited Na+-independent choline uptake. We conclude that rat astrocytes express an intermediate-affinity Na+-independent choline transport system. This system seems to occur through a CTL1 and is responsible for the uptake of choline and organic cations in these cells.  相似文献   

2.
We examined the molecular and functional characterization of choline uptake into human neuroblastoma cell lines (SH-SY5Y: non-cholinergic and LA-N-2: cholinergic neuroblastoma), and the association between choline transport and acetylcholine (ACh) synthesis in these cells. Choline uptake was saturable and mediated by a single transport system. Removal of Na(+) from the uptake buffer strongly enhanced choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium. The increase in choline uptake under Na(+)-free conditions was inhibited by a Na(+)/H(+) exchanger (NHE) inhibitor. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), NHE1 and NHE5 mRNA are mainly expressed. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. ChAT mRNA was expressed at a much higher level in LA-N-2 cells than in SH-SY5Y cells. The conversion of choline to ACh was confirmed in both cells, and was enhanced in Na(+)-free conditions. These findings suggest that CTL1 is functionally expressed in both SH-SY5Y and LA-N-2 cells and is responsible for choline uptake that relies on a directed H(+) gradient as a driving force, and this transport functions in co-operation with NHE1 and NHE5. Furthermore, choline uptake through CTL1 is associated with ACh synthesis in cholinergic neuroblastoma cells.  相似文献   

3.
Stimulation of astrocytes with the excitatory neurotransmitter glutamate leads to the formation of inositol 1,4,5-trisphosphate and the subsequent increase of intracellular calcium content. Astrocytes express both ionotropic receptors and metabotropic glutamate (mGlu) receptors, of which mGlu5 receptors are probably involved in glutamate-induced calcium signaling. The mGlu5 receptor occurs as two splice variants, mGlu5a and mGlu5b, but it was hitherto unknown which splice variant is responsible for the glutamate-induced effects in astrocytes. We report here that both mRNAs encoding mGlu5 receptor splice variants are expressed by cultured astrocytes. The expression of mGlu5a receptor mRNA is much stronger than that of mGlu5b receptor mRNA in these cells. In situ hybridization experiments reveal neuronal expression of mGlu5b receptor mRNA in adult rat forebrain but a strong neuronal expression of mGlu5a mRNA only in olfactory bulb. Signals for mGlu5a receptor mRNA in the rest of the brain were diffuse and weak but consistently above background. Activation of mGlu5 receptors in astrocytes yields increases in inositol phosphate production and transient calcium responses. It is surprising that the rank order of agonist potency [quisqualate > (2S,1 'S,2'S)-2-(carboxycyclopropyl)glycine = trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) > glutamate] differs from that reported for recombinantly expressed mGlu5a receptors. The expression of mGlu5a receptor mRNA and the occurrence of 1S,3R-ACPD-induced calcium signaling were found also in cultured microglia, indicating for the first time expression of mGlu5a receptors in these macrophage-like cells.  相似文献   

4.
Synthesis of acetylcholine (ACh) by non‐neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+‐dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non‐neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non‐neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter‐like proteins, a five gene family choline‐transporter like protein (CTL)1–5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+‐independent and CTL1–5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non‐neuronal cell lines and presents a mechanism to target non‐neuronal ACh synthesis without affecting neuronal ACh synthesis.  相似文献   

5.
Choline is an essential nutrient necessary for synthesis of membrane phospholipids, cell signalling molecules and acetylcholine. The aim of this study was to detect and characterize the choline transporter-like 1 (CTL1/SLC44A1) protein in CNS tissues and the hybrid neuroblastoma × glioma cell line NG108-15, which synthesizes acetylcholine and has high affinity choline transport but does not express the cholinergic high affinity choline transporter 1. The presence of CTL1 protein in NG108-15 cells was confirmed using our antibody G103 which recognizes the C-terminal domain of human CTL1. Three different cognate small interfering RNAs were used to decrease CTL1 mRNA in NG108-15 cells, causing lowered CTL1 protein expression, choline uptake and cell growth. None of the small interfering RNAs influenced carnitine transport, demonstrating the absence of major non-specific effects. In parental C6 cells knockdown of CTL1 also reduced high affinity choline transport. Our results support the concept that CTL1 protein is necessary for the high affinity choline transport which supplies choline for cell growth. The presence of CTL1 protein in rat and human CNS regions, where it is found in neuronal, glial and endothelial cells, suggests that malfunction of this transporter could have important implications in nervous system development and repair following injury, and in neurodegenerative diseases.  相似文献   

6.
Estrogens exert a variety of effects in both reproductive and non-reproductive tissues. With the discovery of ERα splice variants, prior assumptions concerning tissue-specific estrogen signaling need to be re-evaluated. Accordingly, we sought to determine the expression of the classical estrogen receptors and ERα splice variants across reproductive and non-reproductive tissues of male and female mice. Western blotting revealed that the full-length ERα66 was mainly present in female reproductive tissues but was also found in non-reproductive tissues at lower levels. ERα46 was most highly expressed in the heart of both sexes. ERα36 was highly expressed in the kidneys and liver of female mice but not in the kidneys of males. ERβ was most abundant in non-reproductive tissues and in the ovaries. Because the kidney has been reported to be the most estrogenic non-reproductive organ, we sought to elucidate ER renal expression and localization. Immunofluorescence studies revealed ERα66 in the vasculature and the glomerulus. It was also found in the brush border of the proximal tubule and in the cortical collecting duct of female mice. ERα36 was evident in mesangial cells and tubular epithelial cells of both sexes, as well as podocytes of females but not males. ERβ was found primarily in the podocytes in female mice but was also present in the mesangial cells in both sexes. Within the renal cortex, ERα46 and ERα36 were mainly located in the membrane fraction although they were also present in the cytosolic fraction. Given the variability of expression patterns demonstrated herein, identification of the specific estrogen receptors expressed in a tissue is necessary for interpreting estrogenic effects. As this study revealed expression of the ERα splice variants at multiple sites within the kidney, further studies are warranted in order to elucidate the contribution of these receptors to renal estrogen responsiveness.  相似文献   

7.
We examined the molecular and functional characterization of choline uptake in human colon carcinomas using the cell line HT-29. Furthermore, we explored the possible correlation between choline uptake and cell proliferation. Choline uptake was saturable and mediated by a single transport system. Interestingly, removal of Na+ from the uptake buffer strongly enhanced choline uptake. This increase in component of choline uptake under Na+-free conditions was inhibited by a Na+/H+ exchanger 1 (NHE1) inhibitor. Collapse of the plasma-membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium and by intracellular alkalinization. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), CTL2, CTL4 and NHE1 mRNA are mainly expressed in HT-29 cells. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in HT-29 cells and is responsible for choline uptake in these cells. We conclude that choline transporters, especially CTL1, use a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE1. Finally, cell proliferation was inhibited by HC-3 and tetrahexylammonium chloride (THA), which strongly inhibits choline uptake. Identification of this novel CTL1-mediated choline uptake system provides a potential new target for therapeutic intervention.  相似文献   

8.
9.
In immature and mature primary cultured rat calvarial osteoblasts, both mRNA and corresponding proteins were constitutively expressed for 2 splice variants of GABA(B) receptor (GABA(B)R) subunits but not for any known GABA(A) and GABA(C) receptor subunits. The agonist for GABA(B)R baclofen significantly inhibited cAMP formation induced by forskolin in a manner sensitive to the antagonist 2-hydroxysaclofen. Similar expression was seen with mRNA for GABA(B)R-1a and -1b splice variants in the murine calvarial osteoblast cell line MC3TC-E1 cells cultured for 7-21 days in vitro (DIV). In these MC3T3-E1 cells, baclofen not only inhibited the activity of alkaline phosphatase, but also exacerbated Ca2+ accumulation, throughout the culture period up to 28 DIV. These results suggest that GABA may play an unidentified role in mechanisms associated with cellular proliferation, differentiation, and/or development through functional GABA(B)R constitutively expressed in cultured osteoblasts.  相似文献   

10.
Enigk RE  Maimone MM 《Gene》1999,238(2):479-488
Alpha-dystrobrevin is a dystrophin-related protein expressed primarily in skeletal muscle, heart, lung and brain. In skeletal muscle, alpha-dystrobrevin is a component of the dystrophin-associated glycoprotein complex and is localized to the sarcolemma, presumably through interactions with dystrophin and utrophin. Alternative splicing of the alpha-dystrobrevin gene generates multiple isoforms which have been grouped into three major classes: alpha-DB1, alpha-DB2, and alpha-DB3. Various isoforms have been shown to interact with a variety of proteins; however, the physiological function of the alpha-dystrobrevins remains unknown. In the present study, we have cloned a novel alpha-dystrobrevin cDNA encoding a protein (referred to as alpha-DB2b) with a unique 11 amino acid C-terminal tail. Using RT PCR with primers specific to the new isoform, we have characterized its expression in skeletal muscle, heart, and brain, and in differentiating C2C12 muscle cells. We show that alpha-DB2b is expressed in skeletal muscle, heart and brain, and that exons 12 and 13 are alternatively spliced in alpha-DB2b to generate at least three splice variants. The major alpha-DB2b splice variant expressed in adult skeletal muscle and heart contains exons 12 and 13, while in adult brain, two alpha-DB2b splice variants are expressed at similar levels. This is consistent with the preferential expression of exons 12 and 13 in other alpha-dystrobrevin isoforms in skeletal muscle and heart. Similarly, in alpha-DB1 the first 21 nucleotides of exon 18 are preferentially expressed in skeletal muscle and heart relative to brain. We also show that the expression of alternatively spliced alpha-DB2b is developmentally regulated in muscle; during differentiation of C2C12 cells, alpha-DB2b expression switches from an isoform lacking exons 12 and 13 to one containing them. We demonstrate similar developmental upregulation of exons 12, 13, and 18 in alpha-DB1 and of exons 12 and 13 in alpha-DB2a. Finally, we show that alpha-DB2b protein is expressed in adult skeletal muscle, suggesting that it has a functional role in adult muscle. Together, these data suggest that alternatively spliced variants of the new alpha-dystrobrevin isoform, alpha-DB2b, are differentially expressed in various tissues and developmentally regulated during muscle cell differentiation in a fashion similar to that previously described for alpha-dystrobrevin isoforms.  相似文献   

11.
Antibodies to the solute carrier protein, CTL2/SLC44A2, cause hearing loss in animals, are frequently found in autoimmune hearing loss patients, and are implicated in transfusion-related acute lung injury. We cloned a novel CTL2/SLC44A2 isoform (CTL2 P1) from inner ear and identified an alternate upstream promoter and exon 1a encoding a protein of 704 amino acids which differs in the first 10–12 amino acids from the known exon 1b isoform (CTL2 P2; 706 amino acids). The expression of these CTL2/SLC44A2 isoforms, their posttranslational modifications in tissues and their localization in HEK293 cells expressing rHuCTL2/SLC44A2 were assessed. P1 and P2 isoforms with differing glycosylation are variably expressed in cochlea, tongue, heart, colon, lung, kidney, liver and spleen suggesting tissue specific differences that may influence function in each tissue. Because antibodies to CTL2/SLC44A2 have serious pathologic consequences, it is important to understand its distribution and modifications. Heterologous expression in X. laevis oocytes shows that while human CTL2-P1 does not transport choline, human CTL2-P2 exhibits detectable choline transport activity.  相似文献   

12.
Prominin-1, a heavily glycosylated pentaspan membrane protein, is mainly known for its function as a marker for (cancer) stem cells, although it can also be detected on differentiated cells. Mouse prominin-1 expression is heavily regulated by splicing in eight different variants. The function or the expression pattern of prominin-1 and its splice variants (SVs) is thus far unknown. In this study, we analyzed the expression of the prominin-1 splice variants on mRNA level in several mouse tissues and found a broad tissue expression of the majority of SVs, but a specific set of SVs had a much more restricted expression profile. For instance, the testis expressed only SV3 and SV7. Moreover, SV8 was solely detected in the eye. Intriguingly, prominin-1 knockout mice do not suffer from gross abnormalities, but do show signs of blindness, which suggest that SV8 has a specific function in this tissue. In addition, databases searches for putative promoter regions in the mouse prominin-1 gene revealed three potential promoter regions that could be linked to specific SVs. Interestingly, for both SV7 and SV8, a specific potential promoter region could be identified. To conclude, the majority of mouse prominin-1 splice variants are widely expressed in mouse tissues. However, specific expression of a few variants, likely driven by specific promoters, suggests distinct regulation and a potential important function for these variants in certain tissues.  相似文献   

13.
14.
15.
1,25-Dihydroxyvitamin D3 (calcitriol) is the most active natural metabolite of Vitamin D3. It has strong antiproliferative and differentiating effects on various cell types including breast cancer cells. 25-Hydroxyvitamin D3-1α-hydroxylase (1α-hydroxylase, CYP27B1) is one of the key enzymes in the formation of calcitriol. It has been found in breast cancer cells suggesting an autocrine regulation of formation of calcitriol in these cells. Alternative splicing of the encoding genes for this enzyme can possibly play a role in regulating the enzyme level and can explain tissue specific variations of 1α-hydroxylase activity. Splice variants containing intron 1 may encode for truncated proteins with deletion of protein domains which are essential for its enzymatic activity. In order to obtain more information on the abundance of 1α-hydroxylase splice variants, we performed a highly specific nested touchdown PCR in MCF-7 cells. The full-length sequence of 1α-hydroxylase and two different splice variants of this enzyme containing intron 1 were isolated. By Western blot technique we then confirmed the protein products of the full-length enzyme and its splice variants. We hypothesize that that the expression of splice variants can lead to a quantitatively lower expression of the mRNA of the full-length enzyme. The abundance of less active 1α-hydroxylase protein variants can alter the local synthesis of calcitriol in the cells and may explain variations of enzymatic activity in different cells and tissues.  相似文献   

16.
Mammalian PITPbeta (phosphatidylinositol transfer protein beta) is a 272-amino-acid polypeptide capable of transferring PtdIns, PtdCho and SM (sphingomyelin) between membrane bilayers. It has been reported that Ser262 present in the C-terminus of PITPbeta is constitutively phosphorylated and determines Golgi localization. We provide evidence for the expression of an sp (splice) variant of PITPbeta (PITPbeta-sp2) where the C-terminal 15 amino acids of PITPbeta-sp1 are replaced by an alternative C-terminus of 16 amino acids. PITPbeta-sp1 is the product of the first 11 exons, whereas PITPbeta-sp2 is a product of the first 10 exons followed by the twelfth exon--exon 11 being 'skipped'. Both splice variants are capable of PtdIns and PtdCho transfer, with PITPbeta-sp2 being unable to transport SM. PITPbeta is ubiquitously expressed, with the highest amounts of PITPbeta found in HL60 cells and in rat liver; HL60 cells express only PITPbeta-sp1, whereas rat liver expresses both sp variants in similar amounts. In both cell types, PITPbeta-sp1 is constitutively phosphorylated and both the PtdIns and PtdCho forms of PITPbeta-sp1 are present. In contrast, PITPbeta-sp2 lacks the constitutively phosphorylated Ser262 (replaced with glutamine). Nonetheless, both PITPbeta variants localize to the Golgi and, moreover, dephosphorylation of Ser262 of PITPbeta-sp1 does not affect its Golgi localization. The presence of PITPbeta sp variants adds an extra level of proteome complexity and, in rat liver, the single gene for PITPbeta gives rise to seven distinct protein species that can be resolved on the basis of their charge differences.  相似文献   

17.
Homeostatic regulation of the plasma choline concentration depends on the effective functioning of a choline transporter in the kidney. However, the nature of the choline transport system in the kidney is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake in the rat renal tubule epithelial cell line NRK-52E. Choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 16.5 μM and a maximal velocity (Vmax) of 133.9 pmol/mg protein/min. The Vmax value of choline uptake was strongly enhanced in the absence of Na+ without any change in Km values. The increase in choline uptake under Na+-free conditions was inhibited by Na+/H+ exchanger (NHE) inhibitors. Choline uptake was inhibited by the choline uptake inhibitor hemicholinium-3 (HC-3) and organic cations, and was decreased by acidification of the extracellular medium and by intracellular alkalinization. Collapse of the plasma membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. NRK-52E cells mainly express mRNA for choline transporter-like proteins (CTL1 and CTL2), and NHE1 and NHE8. CTL1 protein was recognized in both plasma membrane and mitochondria. CTL2 protein was mainly expressed in mitochondria. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in NRK-52E cells and is responsible for choline uptake. This choline transport system uses a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE8. Furthermore, the presence of CTL2 in mitochondria provides a potential site for the control of choline oxidation.  相似文献   

18.
19.
Nucleotide sugar transporters deliver nucleotide sugars into the Golgi apparatus and endoplasmic reticulum. This study aimed to further characterize mammalian UDP-galactose transporter (UGT) in MDCK and CHO cell lines. MDCK-RCAr and CHO-Lec8 mutant cell lines are defective in UGT transporter, although they exhibit some level of galactosylation. Previously, only single forms of UGT were identified in both cell lines, UGT1 in MDCK cells and UGT2 in CHO cells. We have identified the second UGT splice variants in CHO (UGT1) and MDCK (UGT2) cells. Compared to UGT1, UGT2 is more abundant in nearly all examined mammalian tissues and cell lines, but MDCK cells exhibit different relative distribution of both splice variants. Complementation analysis demonstrated that both UGT splice variants are necessary for N- and O-glycosylation of proteins. Both mutant cell lines produce chondroitin-4-sulfate at only a slightly lower level compared to wild-type cells. This defect is corrected by overexpression of both UGT splice variants. MDCK-RCAr mutant cells do not produce keratan sulfate and this effect is not corrected by either UGT splice variant, overexpressed either singly or in combination. Here we demonstrate that both UGT splice variants are important for glycosylation of proteins. In contrast to MDCK cells, MDCK-RCAr mutant cells may possess an additional defect within the keratan sulfate biosynthesis pathway.  相似文献   

20.
The major laminin-binding integrin of skeletal, smooth, and heart muscle is α7β1-integrin, which is structurally related to α6β1. It occurs in three cytoplasmic splice variants (α7A, -B, and -C) and two extracellular forms (X1 and X2) which are developmentally regulated and differentially expressed in skeletal muscle. Previously, we have shown that ectopic expression of the α7β-integrin splice variant in nonmotile HEK293 cells specifically induced cell locomotion on laminin-1 but not on fibronectin. To investigate the specificity and the mechanism of the α7-mediated cell motility, we expressed the three α7-chain cytoplasmic splice variants, as well as α6A- and α6B-integrin subunits in HEK293 cells. Here we show that all three α7 splice variants (containing the X2 domain), as well as α6A and α6B, promote cell attachment and stimulate cell motility on laminin-1 and its E8 fragment. Deletion of the cytoplasmic domain (excluding the GFFKR consensus sequence) from α7B resulted in a loss of the motility-enhancing effect. On laminin-2/4 (merosin), the predominant isoform in mature skeletal muscle, only α7-expressing cells showed enhanced motility, whereas cells transfected with α6A and α6B neither attached nor migrated on laminin-2. Adhesion of α7-expressing cells to both laminin-1 and laminin-2 was specifically inhibited by a new monoclonal antibody (6A11) specific for α7. Expression of the two extracellular splice variants α7X1 and α7X2 in HEK293 cells conferred different motilities on laminin isoforms: Whereas α7X2B promoted cell migration on both laminin-1 and laminin-2, α7X1B supported motility only on laminin-2 and not on laminin-1, although both X1 and X2 splice variants revealed similar adhesion rates to laminin-1 and -2. Fluorescence-activated cell sorter analysis revealed a dramatic reduction of surface expression of α6-integrin subunits after α7A or -B transfection; also, surface expression of α1-, α3-, and α5-integrins was significantly reduced. These results demonstrate selective responses of α6- and α7-integrins and of the α7 splice variants to laminin-1 and -2 and indicate differential roles in laminin-controlled cell adhesion and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号