首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 23-member C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione (PBD dilactam) library has been synthesized using Suzuki coupling, and the effect of base upon racemisation at the C11a-position during the cross-coupling reaction studied. Three library members (21, 30 and 33) were sufficiently cytotoxic in the NCI's preliminary screen to warrant further evaluation, and one (30, R=p-Br) was found to be cytotoxic at the sub-micromolar level in the A498 renal cancer cell line. DNA thermal denaturation studies suggested that this activity may be associated with non-covalent DNA interaction, and also demonstrated that introduction of C2-C3 unsaturation and addition of C2-aryl functionalities to the PBD dilactam skeleton significantly enhanced helix stabilisation compared to the unsubstituted PBD dilactam (6).  相似文献   

2.
We have characterized the interaction between the first two short consensus repeats (SCR1-2) of complement receptor type 2 (CR2, CD21) and C3d in solution, by utilising the available crystal structures of free and C3d-bound forms of CR2 to create a series of informative mutations targeting specific areas of the CR2-C3d complex. Wild-type and mutant forms of CR2 were expressed on the surface of K562 erythroleukemia cells and their binding ability assessed using C3dg-biotin tetramers complexed to fluorochrome conjugated streptavidin and measured by flow cytometry. Mutations directed at the SCR2-C3d interface (R83A, R83E, G84Y) were found to strongly disrupt C3dg binding, supporting the conclusion that the SCR2 interface reflected in the crystal structure is correct. Previous epitope and peptide mapping studies have also indicated that the PILN11GR13IS sequence of the first inter-cysteine region of SCR1 is essential for the binding of iC3b. Mutations targeting residues within or in close spatial proximity to this area (N11A, N11E, R13A, R13E, Y16A, S32A, S32E), and a number of other positively charged residues located primarily on a contiguous face of SCR1 (R28A, R28E, R36A, R36E, K41A, K41E, K50A, K50E, K57A, K57E, K67A, K67E), have allowed us to reassess those regions on SCR1 that are essential for CR2-C3d binding. The nature of this interaction and the possibility of a direct SCR1-C3d association are discussed extensively. Finally, a D52N mutant was constructed introducing an N-glycosylation sequence at an area central to the CR2 dimer interface. This mutation was designed to disrupt the CR2-C3d interaction, either directly through steric inhibition, or indirectly through disruption of a physiological dimer. However, no difference in C3dg binding relative to wild-type CR2 could be observed for this mutant, suggesting that the dimer may only be found in the crystal form of CR2.  相似文献   

3.
Factor VIIIa is a heterotrimer of the factor VIII heavy chain-derived A1 and A2 subunits plus the factor VIII light chain-derived A3-C1-C2 subunit. While the A1 and A3-C1-C2 subunits can be isolated as a stable dimer, the A2 subunit is weakly associated with the dimer. In the human protein, the association of A2 with dimer is reversible and governed by a pH-dependent dissociation constant. Using the specific activity of factor VIIIa as an indicator of trimer concentration, the Kd (pH 6.0) was determined to be 28 nM whereas at the more physiologic pH (pH 7.4) this value was approximately 260 nM. Results from pH shift experiments confirmed the reversible binding of A2 to dimer as did the capacity for high levels of exogenous A2 subunit to inhibit the spontaneous decay of factor VIIIa activity. A2 subunit associated with the A1 subunit in the A1/A3-C1-C2 dimer based upon the capacity for free A1 subunit to inhibit the reconstitution of factor VIIIa from A2 subunit and dimer. These results indicate that the primary mechanism for the spontaneous decay of human factor VIIIa is the reversible dissociation of A2 subunit from the A1 subunit of the A1/A3-C1-C2 dimer.  相似文献   

4.
A prodrug form (17) of a novel C2/C2′-aryl-substituted pyrrolobenzodiazepine (PBD) dimer (16) has been synthesized by introducing sodium bisulfite groups to the C11/C11′-positions of the parent bis-imine. The prodrug form is highly water soluble, stable in aqueous conditions, and the rate of DNA cross-link formation is much slower compared to the parent bis-imine.  相似文献   

5.
Heterodimeric human factor VIII was proteolytically activated by catalytic levels of thrombin to yield the (labile) active cofactor factor VIIIa possessing an initial specific activity of approximately 80 units/microgram. Activation paralleled the generation of fragments A1 and A2 derived from the heavy chain and A3-C1-C2 derived from the light chain. Chromatography of factor VIIIa, on Mono-S buffered at pH 6.0 resulted in separation of the bulk of the A2 fragment from a fraction composed predominantly of A1/A3-C1-C2 dimer plus low levels of A2 fragment. Only the latter fraction contained clotting activity (approximately 20 units/microgram) which was stable and represented a less than 10% yield when compared with the peak activity of unfractionated factor VIIIa. Further depletion of A2 fragment from Mono-S-purified factor VIIIA, achieved using an immobilized monoclonal antibody to the A2 domain, yielded a relatively inactive A1/A3-C1-C2 dimer (less than 0.4 unit/microgram). Factor VIIIa (greater than 40 units/microgram) was reconstituted from the A1/A3-C1-C2 dimer plus the A2 fragment in a reaction that was Me(2+)-independent and inhibited by moderate ionic strength. Reassociation of A2 required the A1 subunit in that the A2 subunit associated weakly if at all to A3-C1-C2 in the absence of A1. These results indicated that human factor VIIIa is a trimer represented by the subunits A1/A2/A3-C1-C2 and that the A2 subunit is required for expression of factor VIIIa activity.  相似文献   

6.
A series of novel C2,C3-endo unsaturated pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) has been synthesised via cleavage of the N10-Alloc protecting group from appropriate precursors. Biophysical and biological evaluations show that the presence of C2/C3-endo unsaturation in the PBD C-ring enhances both DNA-binding reactivity and in vitro cytotoxic potency.  相似文献   

7.
The association and activation states of complement subcomponents C1r and C1s biosynthesized by Hep G2 cells were studied. C1r and C1s are secreted in stoichiometric amounts; in the presence of Ca2+ they are associated in a complex that sediments similarly to plasma C1r2-C1s2. Both compounds are synthesized as monomer proteins of apparent Mr 86 000. C1r is secreted as a dimer. Secreted C1r is not autoactivatable but undergoes proteolysis by exogenous C1r; secreted C1s is also proteolysed by exogenous C1r. In the presence of immune-complex-bound C1q, secreted C1r and C1s are able to reconstitute C1, but normal activation requires extrinsic C1r2-C1s2.  相似文献   

8.
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH2 functionalities. The PBD dimer SJG-136, which has a C8–O–(CH2)3–O–C8′′ central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8–O–(CH2)5–O–C8′), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8′-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA–interaction behaviour of a PBD dimer of particular C8–C8′ linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences.  相似文献   

9.
Heterotrimeric factor VIIIa was reconstituted from isolated A2 subunit and A1/A3-C1-C2 dimer of thrombin-activated human factor VIII in a reaction that was sensitive to pH. Maximal levels of reconstituted factor VIIIa at pH 6.0 were as much as 20-fold greater than were values observed at pH 7.5. The presence of factor IXa and phospholipid resulted in a marked increase in factor VIIIa reconstituted at physiologic pH. However, the resultant factor VIIIa was unstable due to slow proteolysis of the A1 subunit. Factor IXa modified by the active site-specific reagent dansyl-glutamyl-glycyl-arginyl-chloromethyl ketone (DEGR-IXa) increased the level of factor VIIIa reconstituted from subunits to a similar extent as was observed for unmodified factor IXa and yielded stable factor VIIIa. This enhancement was saturated above a 1:1 molar ratio of DEGR-IXa to factor VIIIa subunits and could be blocked by an anti-factor IX antibody, suggesting that the DEGR-IXa-dependent increase in factor VIIIa reconstitution correlated with assembly of the factor X-ase complex. At a saturating amount of DEGR-IXa, the level of factor VIIIa reconstitution at pH 7.5 approached values obtained at pH 6.0. Fluorescence polarization measurements indicated that factor VIIIa altered binding of DEGR-IXa to phospholipid. However, neither the A2 subunit nor the A1/A3-C1-C2 dimer alone produced this effect. This result suggested that both A2 and A1/A3-C1-C2 were necessary for association of the cofactor with factor IXa. These results suggest a model in which assembly of the intrinsic factor X-ase complex stabilizes factor VIIIa through inhibition of subunit dissociation.  相似文献   

10.
The C2-C3 intervertebral joint must be regarded as a transitional area situated between the upper cervical spine where most rotation of the neck and little flexion and extension occur and the lower cervical spaces where chiefly motion in the sagittal plane and also somewhat rotation take place. Under normal circumstances the range of flexion-extension reaches 11 degrees, slighter than below (19.5 degrees at C5-C6); on the opposite, the range of rotation attains 7 degrees; less than above but much more than below (0 degrees at C5-C6). The motion in the sagittal and coronal planes is relatively poor because of the location of Penning's motor-axis of C2 which runs far from the vertebral body and the lowness of the intervertebral disc. However, the rotation of C2 with respect to C3 is fair by the peculiar inclination of the articular facets which slope sagittally but also coronally and trace a sphere whereupon C2 may move around its motor-centre in any plane. When C2-C3 is surgically fixed by bone graft, the lack of motion is completed by a "compensatory movement" in the upper cervical spaces and especially at the atlantooccipital joint for flexion-extension. In the same way, C2-C3 may improve its mobility especially in the sagittal plane when the inferior partner is blocked by surgical or arthritic fusion.  相似文献   

11.
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.  相似文献   

12.
The physiological implications of C(3)-C(4) photosynthesis were investigated using closely related Panicum species exposed to industrial-age climate change. Panicum bisulcatum (C(3)), P. milioides (C(3)-C(4)), and P. coloratum (C(4)) were grown in a glasshouse at three CO(2) concentrations ([CO(2)]: 280, 400, and 650?μl l(-1)) and two air temperatures [ambient (27/19?°C day/night) and ambient + 4?°C] for 12 weeks. Under current ambient [CO(2)] and temperature, the C(3)-C(4) species had higher photosynthetic rates and lower stomatal limitation and electron cost of photosynthesis relative to the C(3) species. These photosynthetic advantages did not improve leaf- or plant-level water (WUE) or nitrogen (NUE) use efficiencies of the C(3)-C(4) relative to the C(3) Panicum species. In contrast, the C(4) species had higher photosynthetic rates and WUE but similar NUE to the C(3) species. Increasing [CO(2)] mainly stimulated photosynthesis of the C(3) and C(3)-C(4) species, while high temperature had no or negative effects on photosynthesis of the Panicum species. Under ambient temperature, increasing [CO(2)] enhanced the biomass of the C(3) species only. Under high temperature, increasing [CO(2)] enhanced the biomass of the C(3) and C(3)-C(4) species to the same extent, indicating increased CO(2) limitation in the C(3)-C(4) intermediate at high temperature. Growth [CO(2)] and temperature had complex interactive effects, but did not alter the ranking of key physiological parameters amongst the Panicum species. In conclusion, the ability of C(3)-C(4) intermediate species partially to recycle photorespired CO(2) did not improve WUE or NUE relative to congeneric C(3) or C(4) species grown under varying [CO(2)] and temperature conditions.  相似文献   

13.
Factor VIIIa is a trimer of the A1, A2, and A3-C1-C2 subunits. Regions in the A2 subunit that interact with the A1/A3-C1-C2 dimer were localized using synthetic peptides derived from A2 sequences showing high probability of being surface exposed. Peptides were restricted to residues 373-562 of A2 based on the earlier observation that this region of A2 reacts with A1 using a zero length cross-linker. Peptides were assessed for their capacity to inhibit the reconstitution of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. Reconstitution was monitored using both regeneration of factor VIIIa activity and fluorescence quenching of an acrylodan-labeled A2 (Ac-A2) by fluorescein-labeled A1/A3-C1-C2. The activity assay identified four peptides as inhibitors, residues 373-395 (IC(50) = 65 micrometer), 418-428 (IC(50) = 25 micrometer), 482-493 (IC(50) = 325 micrometer), and 518-533 (IC(50) = 585 micrometer). The 373-395 and 518-533 peptides eliminated the fluorescence quenching of Ac-A2, whereas the 418-428 peptide reduced but did not eliminate Ac-A2 quenching. Peptide 482-493 had no effect on the fluorescence quenching of Ac-A2 suggesting that the peptide did not directly affect reassociation of the factor VIIIa subunits. These results identify three regions in the A2 subunit (373-395, 418-428, and 518-533) that interact with the A1/A3-C1-C2 dimer. Furthermore, comparison of results obtained using the two assays distinguish inhibition of the intersubunit interactions from intermolecular interactions.  相似文献   

14.
A C intermediate, LAC14, was prepared from TNP-aminocaproyl liposomes sensitized with anti-TNP antibody (Ab) and purified human C1 and C4. LAC14, containing radiolabeled C4, was analyzed by SDS-PAGE followed by autoradiography, and yielded a 210-kDa band and a predominant 400-kDa band. The 210-kDa band consisted of monomeric C4b bound to low molecular mass acceptors. The 400-kDa band was comprised of a 200-kDa moiety, as well as beta- and gamma-chains of C4. The 200-kDa moiety contained neither C1 nor sensitizing Ab, but it was largely decreased by treatment with NH2OH to the 90-kDa moiety with the mobility corresponding to the alpha'-chain of C4b. A covalent dimer of C4b, therefore, is the predominant form of C4b deposited on liposomes sensitized with antibody. The C4b-C4b dimer formed rapidly (within 5 min) followed by slow dissociation into monomers. The LAC14 bearing the C4b dimer but not the monomer was lysed, although with relatively low efficiency, by the addition of oxyC2 and EDTA-supplemented C3-deficient serum (C3DS), and, furthermore, LAC142 possessed the ability to convert C5 into C5a and C5b. Moreover, lysis was inhibited not by anti-C3 Ab but by anti-C4 Ab. In other experiments, the dimer served as an element of C3 convertase, as well. These findings imply that the C4b dimer, when complexed with C2, expresses C3/C5 convertase activity without participation of C3, and may provide a molecular mechanism whereby sera from patients with complete C3 deficiency retain the ability to induce C-mediated cytolysis.  相似文献   

15.
Summary C2 typing is performed by immunofixation with anti-C2 antiserum instead of by a hemolytic overlay. This method gives sharp band definition, is less cumbersome than the hemolytic overlay, gel files are easily made, and it also enables one to describe putative new nonhemolytic variants. C2 allele frequencies were studied in a sample of the normal Spanish population and were found to be similar to other Caucasoids. HLA-Bw62,-Cw3, and-DR4 were significantly associated with C2 B. Concordantly, the only C2*B extended HLA haplotype found in family material was Bw62-Cw3-Bw6-(DR4)-Bf*S-C2*B-C4A*3 B*2-(GLO*1). C4A*4 B*2 and C4A*4 B*4 are not found within the same haplotype together with C2*B and Bw62 or Bw22 respectively, nor do other C2*B haplotypes occur with common HLA-B alleles. These results may favour the hypothesis that the Bw62-C2*B haplotype is produced by one mutation arising in the Bw62-C2*C haplotype and that subsequent crossovers can explain other C2*B haplotypes (including Bw22-C2*B).  相似文献   

16.
Peroxisome-biogenesis disorders (PBD) are genetically heterogeneous and can be classified into at least ten complementation groups. We recently isolated the cDNA for rat peroxisome assembly factor-2 (PAF-2) by functional complementation using the peroxisome-deficient Chinese-hamster-ovary cell mutant, ZP92. To clarify the novel pathogenic gene of PBD, we cloned the full-length human PAF-2 cDNA that morphologically and biochemically restores peroxisomes of group C Zellweger fibroblasts (the same as group 4 in the Kennedy-Krieger Institute) and identified two pathogenic mutations in the PAF-2 gene in two patients with group C Zellweger syndrome. The 2,940-bp open reading frame of the human PAF-2 cDNA encodes a 980-amino-acid protein that shows 87.1% identity with rat PAF-2 and also restored the peroxisome assembly after gene transfer to fibroblasts of group C patients. Direct sequencing of the PAF-2 gene revealed a homozygous 1-bp insertion at nucleotide 511 (511 insT) in one patient with group C Zellweger syndrome (ZS), which introduces a premature termination codon in the PAF-2 gene, and, in the second patient, revealed a splice-site mutation in intron 3 (IVS3+1G-->A), which skipped exon 3, an event that leads to peroxisome deficiency. Chromosome mapping utilizing FISH indicates that PAF-2 is located on chromosome 6p21.1. These results confirm that human PAF-2 cDNA restores peroxisome of group C cells and that defects in the PAF-2 produce peroxisome deficiency of group C PBD.  相似文献   

17.
Functional model of subcomponent C1 of human complement   总被引:2,自引:0,他引:2  
The domain organization of the zymogen subunits of the first component of human complement C1s, C1r2 and the complex C1s-C1r2-C1s was studied by electron microscopy. In the absence of Ca2+, monomeric C1s was visualized as a dumb-bell-shaped molecule consisting of two globular domains (center-to-center distance 11 nm) connected by a rod. One of the globular domains is assigned to the light chain (B-chain) of the activated molecule, which is homologous to trypsin and other serine proteases. The second globular domain and the rod are assigned to the heavy chain (A-chain) of CIs. The subunit C1r is a stable dimer in the presence or absence of Ca2+. This dimer C1r2 was visualized as composed of two dumb-bells of dimensions similar to those observed for C1s. These are connected near the junctions between the rod and one of the globular domains. This leads to the structure of an asymmetrical X with two inner closely spaced globules (center-to-center distance 7 nm) and two outer globules at a larger distance (14 nm). By comparison with fragment C1rII2, in which part of the A-chain is removed, the inner globular domains were assigned to the catalytic B-chains. This characteristic structure of C1r2 is readily recognized in the central portion of the thread-like 54 nm long C1s-C1r2-C1s complex formed in the presence of Ca2+. By affinity-labeling of C1s with biotin and visualization of avidin-ferritin conjugates in the reconstituted complex, it was demonstrated that C1s forms the outer portion of the complex. A detailed model of C1s-C1r2-C1s is proposed, according to which two C1s monomers bind to the outer globes of C1r2 by contacts between their heavy chains and those of C1r. According to this model the catalytic domains of C1r are located in the center and those of C1s at the very tips of the C1s-C1r2-C1s complex. On the basis of the structure of C1s-C1r2-C1s, we derived a detailed model of the C1 complex (composed of C1q and the tetrameric complex) and we discuss this model with a view to finding a possible activation mechanism of C1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Immunological cross-reactivity of phosphoenolpyruvate carboxylase (PEPC) in leaf extracts of C3-, C4- and C3-C4 intermediate species of Alternanthera (along with a few other C3- and C4- plants) was studied using anti-PEPC antibodies raised against PEPC of Amaranthus hypochondriacus (belonging to the same family as that of Alternanthera, namely Amaranthaceae). Antibodies were also raised in rabbits against the purified PEPC from Zea mays (C4- monocot-Poaceae) as well as Alternanthera pungens (C4- dicot-Amaranthaceae). Monospecificity of PEPC-antiserum was confirmed by immunoprecipitation. Amount of PEPC protein in leaf extracts of A. hypochondriacus could be quantified by single radial immunodiffusion. Cros- reactivity of PEPC in leaf extracts from selected C3-, C4-, and C3-C4 intermediate species (including those of Alternanthera) was examined using Ouchterlony double diffusion and Western blots. Anti-PEPC antiserum raised against A. hypochondriacus enzyme showed high cross-reactivity with PEPC in leaf extracts of A. hypochondriacus or Amaranthus viridis or Alternanthera pungens (all C4 dicots), but limited cross-reactivity with that of Zea mays, Sorghum or Pennisetum (all C4 monocots). Interestingly, PEPC in leaf extracts of Alternanthera tenella, A. ficoides, Parthenium hysterophorus (C3-C4 intermediates) exhibited stronger cross-reactivity (with anti-serum raised against PEPC from Amaranthus hypochondriacus) than that of Pisum sativum, Commelina benghalensis, Altenanthera sessilis (C3 plants). Further studies on cross-reactivities of PEPC in leaf extracts of these plants with anti-PEPC antisera raised against PEPC from leaves of Zea mays or Alternanthera pungens confirmed two points--(i) PEPC of C3-C4 intermediate is distinct from C3 species and intermediate between those of C3- and C4-species; and (ii) PEPC of C4-dicots was closer to that of C3-species or C3-C4 intermediates (dicots) than to that of C4-monocots.  相似文献   

19.
We demonstrate for the first time the presence of species exhibiting C3-C4 intermediacy in Heliotropium (sensu lato), a genus with over 100 C3 and 150 C4 species. CO2 compensation points (Gamma) and photosynthetic water-use efficiencies (WUEs) were intermediate between C3 and C4 values in three species of Heliotropium: Heliotropium convolvulaceum (Gamma = 20 micromol CO2 mol(-1) air), Heliotropium racemosum (Gamma = 22 micromol mol(-1)) and Heliotropium greggii (Gamma = 17 micromol mol(-1)). Heliotropium procumbens may also be a weak C3-C4 intermediate based on a slight reduction in Gamma (48.5 micromol CO2 mol(-1)) compared to C3Heliotropium species (52-60 micromol mol(-1)). The intermediate species H. convolvulaceum, H. greggii and H. racemosum exhibited over 50% enhancement of net CO2 assimilation rates at low CO2 levels (200-300 micromol mol(-1)); however, no significant differences in stomatal conductance were observed between the C3 and C3-C4 species. We also assessed the response of Gamma to variation in O2 concentration for these species. Heliotropium convolvulaceum, H. greggii and H. racemosum exhibited similar responses of Gamma to O2 with response slopes that were intermediate between the responses of C3 and C4 species below 210 mmol O2 mol(-1) air. The presence of multiple species displaying C3-C4 intermediate traits indicates that Heliotropium could be a valuable new model for studying the evolutionary transition from C3 to C4 photosynthesis.  相似文献   

20.
A monoclonal antibody (SB-4) to human C1q was prepared. The equilibrium constant of the antibody for C1q was found to be greater than 10(10) M-1. It has been shown that the antibody binds to the A-B chain dimer, probably via the B chain of C1q. Pepsin digestion of C1q at pH 4.5, which fragments the globular regions but leaves the collagenous region intact, allowed the demonstration that the antigenic site is located in the collagenous region of the molecule. The effect of the antibody on haemolytic activity has shown that it is capable of inhibiting the formation of EAC1 cells from EAC1q cells plus C1r and C1s but is incapable of inhibiting the C1 activity of performed EAC1 cells. This indicates that the binding of the antibody to the collagenous portion of the B chain of C1q probably prevents interaction between C1q and the C1r2-C1s2 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号