首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Decomposition processes of Camellia japonica leaf litter were investigated over an 18-month period with reference to the role of fungal succession in the decomposition of lignin and holocellulose. Decomposition and fungal succession were studied in bleached and nonbleached portions of litter, which were precolonized by ligninolytic and cellulolytic fungi, respectively. Coccomyces nipponicum and Lophodermium sp. (Rhytismataceae), which can attack lignin selectively, caused mass loss of lignin and were responsible for bleaching during the first 4 months (stage I), whereas cellulolytic fungi caused mass loss of holocellulose in adjacent nonbleached portions. Soluble carbohydrates and polyphenols also decreased rapidly during this stage. Pestalotiopsis guepini, coelomycete sp.1, and the Nigrospora state of Khuskia oryzae caused mass loss of holocellulose between 4 and 14 months (stage II) and Xylaria sp. caused mass loss of both lignin and holocellulose from 14–18 months (stage III). In stages II and III, decomposition was more rapid in bleached portions than in nonbleached portions probably due to the prior delignification of lignified holocellulose in bleached portions. Frequencies of these fungi showed different responses among species to the pattern of changes in lignin and holocellulose contents during decomposition. Total hyphal length increased in both portions over the study period, but mycelia of basidiomycetes accounted for about 2% of total hyphal length, suggesting that their role in fungal succession and decomposition was low. Lignin and nitrogen contents were consistently lower and holocellulose content was higher in bleached portions than in nonbleached portions during decomposition. The succession of ligninolytic and cellulolytic fungi was a major driving factor that promoted decomposition and precolonization by ligninolytic fungi enhanced decomposition.  相似文献   

3.
The dependence of fungal decomposition of leaf litter on incubation temperature and litter types used as substrata was assessed under pure culture conditions. Isolates of Xylaria sp., a major ligninolytic fungus in cool temperate forests in Japan, were used as the fungal material. Xylaria sp. is mesophilic; maximum growth and decomposition occurred at 25°C. In the temperature test, the decomposition pattern of beech leaf litter by three isolates of Xylaria sp. changed at a threshold at 25°C. Cellulolytic activity increased with temperature from 5 to 25°C, whereas above 25°C ligninolytic activity increased at the expense of cellulolytic activity, leading to suppressed overall decomposition as a result of the higher temperature. The mass loss of leaf litter caused at 20°C by an isolate of Xylaria sp. was variable among 15 litter types and was correlated negatively with acid-unhydrolyzable residue (AUR) content and positively with total carbohydrate content for the 15 litter types. The effects of temperature and litter type on the growth and decomposition of leaf litter by Xylaria sp. may have implications for changes in fungal decomposition of leaf litter that would be predicted in response to future environmental changes.  相似文献   

4.
Beech cupule litter is the second largest (next to leaf litter) component of total annual litterfall in mast years, and makes an important contribution to carbon budgets in beech forest soils. We investigated the decomposition processes of beech cupule litter over a 30-month period with reference to the role of fungal succession in the decomposition of acid-unhydrolyzable residue (AUR) and holocellulose. During the study period, weight loss of holocellulose occurred, while there was little weight loss of AUR, and 77?% of the original cupule weight remained at the end of the study period. Xylaria sp.1, Geniculosporium sp. and Nigrospora sp. that can attack holocellulose selectively caused mass loss of holocellulose and were responsible for the cupule weight loss. Although the beech cupule is a woody phyllome and its lignocellulose composition is similar to that of coarse woody debris (CWD) rather than leaf litter of beech, the selective decomposition of holocellulose by fungi was similar to the decay process of leaf litter rather than CWD.  相似文献   

5.
Endophytic fungi of healthy twig tissues act as dominant primary colonizers of twig litters and are exposed to the attacks of saprobic secondary colonizers. In the present study, we examined the effect of interspecific interactions on the decay rate of twigs in laboratory experiments using two endophytic ascomycetes (Phomopsis sp. and Xylaria sp.) and two saprobic basidiomycetes (Mycena polygramma and Phanerochaete filamentosa) on twigs of Japanese beech (Fagus crenata) as a model system. Both endophytes were defensive against two saprobes on 2% malt agar, and were not replaced by the saprobes in the twigs during the incubation period. However, inoculation of the saprobes reduced the mass loss of twig components (acid-unhydrolyzable residue (AUR), holocellulose, soluble carbohydrate, and polyphenol). Especially when the twigs previously inoculated with Xylaria sp. or Phomopsis sp. were successively inoculated with M. polygramma the net weight of AUR increased, which was probably due to the synthesized melanin in hyphae of the endophytes. Our findings indicate that interspecific interactions between endophytic and saprobic fungi do affect the total mass of humic substances produced during the litter decay process.  相似文献   

6.
Microbial symbionts of plants can affect decomposition by altering the quality or quantity of host plant tissue (substrate) or the micro‐environment where decomposition occurs (conditioning). In C3 grasses, foliar fungal endophytes (Clavicipitaceae) can increase plant resistance to drought and/or produce alkaloids that reduce herbivory – effects that may also influence host litter composition and subsequent litter decomposition. We studied the effect of the endophyte Epichloë sp. on litter decomposition in the Great Lakes dunes (USA) using a reciprocal design altering endophyte presence/absence in both American beachgrass Ammophila breviligulata substrate (litter bags) and its conditioning of the decomposition microenvironment. Symbiont treatments were crossed with rain‐out shelters that altered growing season precipitation. The first year of decomposition, senesced leaf substrate from A. breviligulata with Epichloë decomposed 21% faster than endophyte‐free substrate. By the third year, conditioning by live symbiotic plants reduced cumulative decomposition by 33% compared to plots planted with endophyte‐free plants. Of the traits we examined – litter quantity, C:N ratio, mineral composition, fungal colonization, and carbon chemistry – increased litter quantity via greater tiller production was the primary trait shift associated with endophyte symbiosis. Epichloë in A. breviligulata litter also altered litter nitrogen decomposition dynamics, as evidenced by lower nitrogen and protein content in decomposed tissue from plants that hosted the endophyte. Differences in initial litter quality and subsequent colonization by saprotrophic fungi were ruled out as key drivers. Altered precipitation had negligible effects on decomposing processes in the dunes. Grass–Epichloë symbiosis altered nutrient cycling through increasing the rate of litter decomposition when present in the litter and through reducing litter decomposition by conditioning the decomposition microenvironment. Epichloë are widespread symbionts of grasses. Thus, their effects on decomposition could be an important, but often overlooked, driver of nutrient cycling in grass‐dominated ecosystems.  相似文献   

7.
Rhytismataceous fungi (Ascomycota) exhibit ligninolytic activities during the initial stages of litter decomposition. We quantitatively investigated the geographical distributions of rhytismataceous fungi on Camellia japonica leaf litter across Japan. We found three rhytismataceous species (Coccomyces sp., Lophodermium jiangnanense, and a Rhytismataceae sp.) on bleached leaves of C. japonica. The Coccomyces sp. was distributed at all 40 sites investigated. On the other hand, L. jiangnanense was restricted to the southwestern region, and the Rhytismataceae sp. was localized to part of the warm-temperate zone. L. jiangnanense and the Rhytismataceae sp. were more common at sites with higher annual temperatures and greater precipitation. The relative abundance of rhytismataceous fungi revealed that either Coccomyces sp. or L. jiangnanense predominated at all sites, with a distribution related to annual precipitation. These results suggest that the geographical distributions and abundances of rhytismataceous fungi are influenced by climatic conditions.  相似文献   

8.
This study was carried out to improve our understanding of the diversity and decomposition potential of endophytes in the leaves of Cinnamomum camphora trees grown in a subtropical region of China. We isolated and identified endophytic fungi from senescent leaves of C. camphora and tested their role in decomposition through pure-culture and pre-colonization. A total of 2,861 endophytic fungi isolated from 69 leaves of C. camphora were grouped into 39 taxa comprising 36 Ascomycetes and 3 Basidiomycetes based on sporulation and ITS sequence analysis. Of these, Colletotrichum gloeosporioides was the most common species (69% relative abundance and 96% colonization frequency), followed by Cladosporium sp.1, Colletotrichum sp. and Chaetomium sp. All 39 endophytes had the ability to decompose C. camphora leaf litter in pure culture, and a few exhibited >20% litter mass loss in 2 months. In most cases, single endopyhytic species showed lower mass loss than mixed microbial groups from active soil after 60 or 120 days. In pre-inoculation, endophytic fungi like Chaetomium sp., Cladosporium sp.1, C. gloeosporioides, Colletotrichum sp. and Guignardia sp. exhibited higher abundance and caused greater mass loss, indicating the potential of these groups to enter and significantly accelerate the process of decomposition. This study concludes that, after entering the decomposition process, selected endophytic fungi with high abundance could influence significantly the decomposition process and thus probably affect carbon and nutrient cycling in C. camphora plantations.  相似文献   

9.
Osono T  Takeda H 《Mycologia》2002,94(3):421-427
The litter decomposing ability of 79 fungal isolates (41 genera, 60 species) was assessed with the pure culture decomposition test. The isolates were collected qualitatively in a cool temperate deciduous forest in Japan during a 21-mo period. Loss of original weight of sterilized litter ranged from 0.1% to 57.6%. Six isolates in the Basidiomycota caused high weight losses ranging from 15.1% to 57.6%. Fourteen isolates in Xylaria and Geniculosporium (the Xylariaceae and its anamorph) also caused high weight losses ranging from 4.0% to 14.4%. Other isolates in the Ascomycota and associated anamorphs and in the Zygomycota caused low weight losses on mean. Six fungi in the Basidiomycota, and all in the Xylariaceae showed a bleaching activity of the litter and caused lignin and carbohydrate decomposition. Mean lignin/weight loss ratios (L/W) and lignin/carbohydrate loss ratios (L/C), were 0.9 and 0.7 for the Basidiomycota and 0.7 and 0.4 for the Xylariaceae, respectively. Significant differences were found in L/W and L/C between the two groups when the result of Xylaria sp. that showed marked delignification was excluded. These differences in lignin and carbohydrate utilization patterns are discussed in relation to the structural and the chemical properties of the decomposed litter and to the implications for organic chemical changes during litter decomposition processes.  相似文献   

10.
The fungal succession on pine cones on the floor ofPinus densiflora forest was investigated in the early decomposition process (within ca. 30% decrease in dry weight). The fungal flora was examined by both washing and surface-sterilization methods on artificially placed cones and naturally fallen cones. The decomposition rates of artificially placed cones were 0.081–0.082 yr–1. On withered cones still attached to the tree,Pestalotiopsis spp. were dominant. These fungi also occurred with higher frequencies after cones had lain on the floor and on cones in the L and FH horizons.Xylaria sp. andPhomopsis sp., which seem to colonize the interior of the tissue, occurred with higher frequencies on the cones on the tree, but their occurrence frequencies decreased after cones had lain on the forest floor. Conversely,Mortierella spp. andTrichoderma spp. newly occurred or their occurrence frequencies increased on lying cones. Of these,Trichoderma koningii increased rapidly and showed high occurrence frequencies.Thysanophora penicillioides, which prefers coniferous substrates, showed higher occurrence frequencies in the early stages of lying on the forest floor. On cones lying on the floor, the fungal flora did not significantly change during the investigation period.  相似文献   

11.
Richard C. Cobb 《Oikos》2010,119(8):1291-1298
Insect and disease outbreak is an important cause of selective species removal and accompanying functional change in North American forests. Outbreak of hemlock woolly adelgid, Adelgies tsugae– HWA, is causing selective removal of eastern hemlock Tsuga canadensis at a regional scale. Impacts of outbreak‐caused canopy mortality and shifts in dominant species on litter decay were compared across sites that range in HWA‐caused canopy damage and subsequent canopy dominance by black birch Betula lenta. Senescent litter from eastern hemlock, black birch, and equal litter mixes were decomposed in the field for 36 months within nine sites in Connecticut and Massachusetts USA. Mass loss and % N accumulation of black birch was 65% and 52% greater compared to eastern hemlock. In contrast, outbreak related canopy damage increased litter mass loss by 11.5% in high mortality stands relative to uninfested stands but canopy damage had no impact on % N dynamics. Non‐additive effects of litter mixing influenced chemical dynamics of decaying litter; black birch accumulated less N and eastern hemlock accumulated more N compared to each species decaying alone. However, these changes offset and mixed litter bags overall showed no differences in N dynamics compared to values from each species decaying alone. In eastern hemlock stands invaded by hemlock woolly adelgid, canopy damage influences the rates and dynamics of decay but species differences between hemlock and black birch leaf litter are the dominant mechanisms of decomposition changes and a long‐lasting driver of increased N cycling rates. Species shifts may be the dominant driver of altered ecosystem processes for other insect outbreaks, particularly when replacement species have very different characteristics regulating decomposition and N cycling.  相似文献   

12.
Endophytic fungi occur on various types of leaf litter, but few studies have been done on their roles as saprophytes in decomposition. This study examined the succession of fungi in live, newly shed, and decomposing leaves at 2 months of decomposition of Camellia japonica and chemical changes in decomposing leaves colonized by endophytes. Coccomyces nipponicum, Lophodermium sp., Geniculosporium sp. 1, and Colletotrichum gloeosporioides were isolated from living leaves. Coccomyces nipponicum and Lophodermium sp. were also isolated frequently from newly shed and decomposing leaves. These two fungi caused a decrease of lignin content and bleaching in decomposing leaves under field and laboratory conditions. Total hyphal length in decomposing leaves was higher in bleached portions than in surrounding nonbleached portions, which probably reflected the early onset of hyphal growth of endophytes inside leaf tissue at leaf senescence or death. Incubation of newly shed leaves that were sterilized to exclude previously established endophytes resulted in no occurrence of bleached portions in decomposing leaves on the forest floor. This result indicated that these endophytes were incapable of colonizing leaves directly after litterfall and that the persistence of endophytes from live leaves was crucial for their colonization in decomposing leaves.  相似文献   

13.
Fungi, especially basidiomycetous litter decomposers, are pivotal to the turnover of soil organic matter in forest soils. Many litter decomposing fungi have a well-developed capacity to translocate resources in their mycelia, a feature that may significantly affect carbon (C) and nitrogen (N) dynamics in decomposing litter. In an eight-month long laboratory study we investigated how the external availability of N affected the decomposition of Scots pine needles, fungal biomass production, N retention and N-mineralization by two litter decomposing fungi – Marasmius androsaceus and Mycena epipterygia. Glycine additions had a general, positive effect on fungal biomass production and increased accumulated needle mass loss after 8 months, suggesting that low N availability may limit fungal growth and activity in decomposing pine litter. Changes in the needle N pool reflected the dynamics of the fungal mycelium. During late decomposition stages, redistribution of mycelium and N out from the decomposed needles was observed for M. epipterygia, suggesting autophagous self degradation.  相似文献   

14.
Bebber DP  Watkinson SC  Boddy L  Darrah PR 《Oecologia》2011,167(4):1177-1184
Anthropogenic nitrogen (N) deposition affects many natural processes, including forest litter decomposition. Saprotrophic fungi are the only organisms capable of completely decomposing lignocellulosic (woody) litter in temperate ecosystems, and therefore the responses of fungi to N deposition are critical in understanding the effects of global change on the forest carbon cycle. Plant litter decomposition under elevated N has been intensively studied, with varying results. The complexity of forest floor biota and variability in litter quality have obscured N-elevation effects on decomposers. Field experiments often utilize standardized substrates and N-levels, but few studies have controlled the decay organisms. Decomposition of beech (Fagus sylvatica) blocks inoculated with two cord-forming basidiomycete fungi, Hypholoma fasciculare and Phanerochaete velutina, was compared experimentally under realistic levels of simulated N deposition at Wytham Wood, Oxfordshire, UK. Mass loss was greater with P. velutina than with H. fasciculare, and with N treatment than in the control. Decomposition was accompanied by growth of the fungal mycelium and increasing N concentration in the remaining wood. We attribute the N effect on wood decay to the response of cord-forming wood decay fungi to N availability. Previous studies demonstrated the capacity of these fungi to scavenge and import N to decaying wood via a translocating network of mycelium. This study shows that small increases in N availability can increase wood decomposition by these organisms. Dead wood is an important carbon store and habitat. The responses of wood decomposers to anthropogenic N deposition should be considered in models of forest carbon dynamics.  相似文献   

15.
There is concern that changes in climate and land use could increase rates of decomposition in peatlands, leading to release of stored C to the atmosphere. Rates of decomposition are driven by abiotic factors such as temperature and moisture, but also by biotic factors such as changes in litter quality resulting from vegetation change. While effects of litter species identity and diversity on decomposition processes are well studied, the impact of changes in relative abundance (evenness) of species has received less attention. In this study we investigated effects of changes in short-term peatland plant species evenness on decomposition in mixed litter assemblages, measured as litter weight loss, respired CO2 and leachate C and N. We found that over the 307-day incubation period, higher levels of species evenness increased rates of decomposition in mixed litters, measured as weight loss and leachate dissolved organic N. We also found that the identity of the dominant species influenced rates of decomposition, measured as weight loss, CO2 flux and leachate N. Greatest rates of decomposition were when the dwarf shrub Calluna vulgaris dominated litter mixtures, and lowest rates when the bryophyte Pleurozium schreberi dominated. Interactions between evenness and dominant species identity were also detected for litter weight loss and leachate N. In addition, positive non-additive effects of mixing litter were observed for litter weight loss. Our findings highlight the importance of changes in the evenness of plant community composition for short-term decomposition processes in UK peatlands.  相似文献   

16.
Fungi play a crucial role in the decomposition of lignin in fallen leaves but few studies have examined the functional roles of ligninolytic fungi associated with the decomposition of fallen leaves on tropical forest soils. This study examined fungal populations responsible for lignin decomposition in Castanopsis sieboldii leaves in a subtropical evergreen broad-leaved forest in southern Japan. Fallen leaves of C. sieboldii are characterized by the occurrence of bleached portions attributable to fungal colonization of leaf tissues and decomposition of lignin. The bleached area accounted for 29.7%, on average, of the total area of C. sieboldii fallen leaves in the study site. Leaf mass per unit area (LMA) and lignin content were lower in the bleached area than in the surrounding nonbleached area of the same leaves, indicating that removal of lignin enhanced mass loss from leaf tissues and created small-scale heterogeneity of decomposition within single leaves. An unidentified species of Lachnocladiaceae (Basidiomycetes) was isolated frequently from the bleached area and caused selective decomposition of lignin in leaves under pure culture conditions, indicating that this fungus was responsible for the bleaching. The greater hyphal length of basidiomycetes in the bleached area than in the nonbleached area supported the finding that this Lachnocladiaceae sp. was associated with the bleaching. The relatively rapid decomposition of C. sieboldii leaves on the subtropical forest soil is partly attributable to colonization of the litter by this Lachnocladiaceae sp.  相似文献   

17.
Roles of diverse fungi in larch needle-litter decomposition   总被引:1,自引:0,他引:1  
Osono T  Fukasawa Y  Takeda H 《Mycologia》2003,95(5):820-826
Functional biodiversity of fungi in larch (Larix leptolepis) forests needle-litter decomposition was examined by a pure-culture test. Weight loss of larch-needle litter, utilization pattern of lignocellulose and chemical composition of remaining litter were investigated and compared for 31 isolates in 27 species of basidiomycetes and ascomycetes. Weight loss (% original weight) of litter ranged from -2.0% to 14.2%. Mean weight loss of litter caused by the basidiomycetes was not significantly different from that caused by the ascomycetes. Basidiomycetes caused loss of lignin and carbohydrates in variable proportions, while ascomycetes exclusively attacked carbohydrates without delignification. The content of lignin and nitrogen in remaining litter was not significantly correlated when both basidiomycetes and ascomycetes were included. However, the correlation coefficient was significant when the relationship was examined separately for basidiomycetes, indicating that the degree of selective delignification determined the final nitrogen content in litter. Possible effects of fungal colonization on needle-litter decomposition in larch forests are discussed.  相似文献   

18.
Insect herbivory can strongly influence ecosystem nutrient dynamics, yet the indirect effects of herbivore‐altered litter quality on subsequent decomposition remain poorly understood. The northern tamarisk beetle Diorhabda carinulata was released across several western states as a biological control agent to reduce the extent of the invasive tree Tamarix spp. in highly‐valued riparian ecosystems; however, very little is currently known about the effects of this biocontrol effort on ecosystem nutrient cycling. In this study, we examined alterations to nutrient dynamics resulting from beetle herbivory in a Tamarix‐invaded riparian ecosystem in the Great Basin Desert in northern Nevada, USA, by measuring changes in litter quality and decomposition, as well as changes in litter quantity. Generally, herbivory resulted in improved leaf litter chemical quality, including significantly increased nitrogen (N) and phosphorus (P) concentrations and decreased carbon (C) to nitrogen (C:N), C:P, N:P, and lignin:N ratios. Beetle‐affected litter decomposed 23% faster than control litter, and released 16% more N and 60% more P during six months of decomposition, as compared to control litter. Both litter types showed a net release of N and P during decomposition. In addition, herbivory resulted in significant increases in annual rates of total aboveground litter and leaf litter production of 82% and 71%, respectively, under the Tamarix canopy. Our finding that increased rates of N and P release linked with an increased rate of mass loss during decomposition resulting from herbivore‐induced increases in litter quality provides new support to the nutrient acceleration hypothesis. Moreover, results of this study demonstrate that the introduction of the northern tamarisk beetle as biological control to a Tamarix‐invaded riparian ecosystem has lead to short‐term stimulation of nutrient cycling. Alterations to nutrient dynamics could have implications for future plant community composition, and thus the potential for restoration of Tamarix‐invaded ecosystems.  相似文献   

19.
Xu  Xiaoniu  Hirata  Eiji  Enoki  Tsutomu  Tokashiki  Yoshihiro 《Plant Ecology》2004,173(2):161-170
Decomposition of typhoon-generated and normal leaf litter and their release patterns for eight nutrient elements were investigated over 3 yr using the litterbag technique in a subtropical evergreen broad-leaved forest on Okinawa Island, Japan. Two common tree species, Castanopsis sieboldii and Schima wallichii, representative of the vegetation and differing in their foliar traits, were selected. The elements analyzed were N, P, K, Ca, Mg, Na, Al, Fe and Mn. Dry mass loss at the end of study varied in the order: typhoon green leaves > typhoon yellow leaves > normal leaves falling for both species. For the same litter type, Schima decomposed faster than Castanopsis. Dry mass remaining after 2 yr of decomposition was positively correlated with initial C:N and C:P ratios. There was a wide range in patterns of nutrient concentration, from a net accumulation to a rapid loss in decomposition. Leaf litter generated by typhoons decomposed more rapidly than did the normal litter, with rapid losses for N and P. Analysis of initial quality for the different litter types showed that the C:P ratios were extremely high (range 896 – 2467) but the P:N ratios were < 0.05 (range 0.02 – 0.04), indicating a likely P-limitation for this forest. On average 32% less N and 60% less P was retranslocated from the typhoon-generated green leaves than from the normal litter for the two species, Castanopsis and Schima. An estimated 2.13 g m–2 yr–1 more N and 0.07 g m–2 yr–1 more P was transferred to the soil as result of typhoon disturbances, which were as high as 52% of N and 74% of P inputted from leaf litter annually in a normal year. Typhoon-driven maintenance of rapid P cycling appears to be an important mechanism by which growth of this Okinawan subtropical forest is maintained.  相似文献   

20.
Leaf litter is a very important primary source of energy in woodland streams. Decomposition of leaf litter is a process mediated by many groups of microorganisms which release extracellular enzymes for the degradation of complex macromolecules. In this process, true fungi and straminipiles are considered to be among the most active groups, more active than the bacteria, at least during the early stages of the process. Colonization increases the quality of the leaves as a food resource for detritivores. In this way, matter and energy enter detritus-based food chains. Previously, aquatic hyphomycetes were considered to be the major fungal group responsible for leaf litter decomposition. Although zoosporic fungi and straminipiles are known to colonize and decompose plant tissues in various environments, there is scant information on their roles in leaf decomposition. This study focuses on the communities of zoosporic fungi and straminipiles in a stream which are involved in the decomposition of leaves of two plant species, Ligustrum lucidum and Pouteria salicifolia, in the presence of other groups of fungi. A characteristic community dominated by Nowakowskiella elegans, Phytophthora sp., and Pythium sp. was found. Changes in the fungal community structure over time (succession) was observed: terrestrial mitosporic fungi appeared during the early stages, zoosporic fungi, straminipiles, and aquatic Hyphomycetes in early-to-intermediate stages, while representatives of the phylum Zygomycota were found at early and latest stages of the decomposition. These observations highlight the importance of zoosporic fungi and straminipiles in aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号