首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Transferase I of rat liver binds aminoacyl-tRNA to form a relatively stable complex, which is retained on cellulose nitrate filters. This reaction proceeds at both 0 degrees C and 37 degrees C and is inhibited by GTP. The resulting product is stabilized by GTP and Mg(2+). 2. Only very low quantities of deacylated tRNA are bound by transferase I. 3. Methods are described for the preparative isolation of the transferase I-aminoacyl-tRNA complex from incubation mixtures by using ion-exchange procedures. 4. The transferase I-aminoacyl-tRNA complex becomes readily bound to ribosomes. The presence of Mg(2+) is essential for the binding. GTP stimulates this reaction but is not absolutely required. 5. It is concluded that the formation of the transferase I-aminoacyl-tRNA complex may be the primary reaction in the binding of aminoacyl-tRNA to mammalian ribosomes and that, unlike in bacterial systems, GTP is not absolutely required for this step.  相似文献   

2.
1. Transferase I from rat liver extracted with iso-octane binds significantly less aminoacyl-tRNA than the non-extracted enzyme. The original activity can be fully restored by the addition of cholesteryl 14-methylhexadecanoate. The binding capacity for GTP is not affected by the extraction. 2. In the presence of extracted transferase I the binding of aminoacyl-tRNA to ribosomes is decreased to 11-26% and the simultaneous binding of GTP to 32-43%. Cholesteryl 14-methylhexadecanoate induces a full reactivation of the extracted enzyme in both respects. 3. Extracted complexes A (aminoacyl-tRNA-GTP-transferase I) become bound to ribosomes to the same extent as the corresponding non-extracted preparations. 4. It is concluded that cholesteryl 14-methylhexadecanoate interacts with the binding site of transferase I for aminoacyl-tRNA and secondarily with that for GTP. It does not affect the binding site for ribosomes.  相似文献   

3.
The properties of cytoplasmic aminoacyl-tRNA synthetase and aminoacyl-transferring enzymes in the myocardium were examined and methods for the assay of the activity of these enzyme systems were developed. Aminoacyl-tRNA synthetase activity was measured from the rate of incorporation of 14C-labelled amino acid into aminoacyl-tRNA. Transferase activity was measured from the rate of incorporation of amino[14C]acyl-tRNA into protein in the presence of a standard preparation of hepatic ribosomes. Aminoacyl-tRNA synthetase activity is labile once the heart has been homogenized, whereas transferase activity is stable. The source of energy for synthetase activity is ATP; that for transferase is GTP. Transferase activity was inhibited by puromycin and stimulated by dithiothreitol, whereas synthetase activity was unaffected.  相似文献   

4.
The phosphorylation of eukaryotic initiation factor (eIF) 2 alpha that occurs when rabbit reticulocyte lysate is incubated in the absence of hemin or with poly(I.C) causes inhibition of polypeptide chain initiation by preventing a separate factor (termed RF) from promoting the exchange of GTP for GDP on eIF-2. When lysate was incubated in the presence of hemin and [14C] eIF-2 or [alpha-32P]GTP, we observed binding of eIF-2 and GDP or GTP to 60 S ribosomal subunits that was slightly greater than that bound to 40 S subunits and little binding to 80 S ribosomes. When incubation was in the absence of hemin or in the presence of hemin plus 0.1 microgram/ml poly(I.C), eIF-2 and GDP binding to 60 S subunits was increased 1.5- to 2-fold, that bound to 80 S ribosomes was almost as great as that bound to 60 S subunits, and that bound to 40 S subunits was unchanged. Our data indicate that about 40% of the eIF-2 that becomes bound to 60 S subunits and 80 S ribosomes in the absence of hemin or with poly(I.C) is eIF-2(alpha-P) and suggest that the eIF-2 and GDP bound is probably in the form of a binary complex. The accumulation of eIF-2.GDP on 60 S subunits occurs before binding of Met-tRNAf to 40 S subunits becomes reduced and before protein synthesis becomes inhibited. The rate of turnover of GDP (presumably eIF-2.GDP) on 60 S subunits and 80 S ribosomes in the absence of hemin is reduced to less than 10% the control rate, because the dissociation of eIF-2.GDP is inhibited. Additional RF increases the turnover of eIF-2.GDP on 60 S subunits and 80 S ribosomes to near the control rate by promoting dissociation of eIF-2.GDP but not eIF-2(alpha-P).GDP. Our findings suggest that eIF-2.GTP binding to and eIF-2.GDP release from 60 S subunits may normally occur and serve to promote subunit joining. The phosphorylation of eIF-2 alpha inhibits polypeptide chain initiation by preventing dissociation of eIF-2.GDP from either free 60 S subunits (thus inhibiting subunit joining directly) or the 60 S subunit component of an 80 S initiation complex (thereby blocking elongation and resulting in the dissociation of the 80 S complex).  相似文献   

5.
Highly purified peptide elongation factor 1 from rabbit reticulocytes liberates the terminal phosphate from [gamma-32P]GTP and incorporates it into its own protein. Approximately one phosphate residue becomes bound by one molecule of the factor. Only the eEF-1 alpha subunit of the factor (Mr 53 000) becomes phosphorylated as revealed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate followed by autoradiography and by the incubation of [gamma-32P]GTP with individual subunits of the elongation factor separated by chromatofocusing in the presence of 5 M urea. The phosphorylation also takes place, though to a lesser extent, if the factor is incubated with Na2H32PO4, probably due to the presence of endogenous GTP bound in the molecule of the factor. The content of endogenous GTP in various factor preparations was 0.21-0.43 mol/mol factor. Phosphorylation of the peptide elongation factor is ribosome-independent, acid-labile and apparently autocatalytic since no other proteins are required for this reaction. Preincubation of the factor with GTP or with inorganic phosphate results in the phosphorylation of the factor and is followed by an enhanced binding of phenylalanyl-tRNA to 80S ribosomes in the presence of poly(U). This is accompanied by a dephosphorylation of the factor protein and thus the reversible autophosphorylation of the factor apparently activates its binding site for aminoacyl-tRNA. This is supported by the observation that sodium fluoride, which inhibits the dephosphorylation of the factor, blocks the factor-catalyzed binding of aminoacyl-tRNA to ribosomes. The incorporation of phosphate into factor protein also inhibits the formation of an eEF-1 X GDP complex, which is inactive in protein synthesis. Thus GDP liberated by the GTPase activity of the factor cannot affect its binding site for aminoacyl-tRNA. This may be the other reason for the enhanced activity of the phosphorylated factor. The autocatalytic GTP-dependent phosphorylation of the peptide elongation factor 1 apparently modifies its function and may thus play a regulatory role in protein synthesis.  相似文献   

6.
Elongation Factor 1 (EF-1) from rabbit reticulocytes interacts with GTP to form a complex that is retained on a nitrocellulose filter. EF-1 also interacts with GDP; however, the concentration of GDP required for maximal complex formation is higher than the concentration of GTP required and the extent of binding is lower. Interaction of EF-1 with GTP in the presence of various aminoacyl-tRNAs from rabbit liver or E. coli results in a 50–75% decrease in the amount of GTP complex retained on a filter. No reduction in the amount of GTP complex retained is observed with deacylated tRNA or with N-acetylphenylalanyl-tRNA. EF-1 is inactivated by heating at 37 °C in the presence of GTP. Aminoacyl-tRNA protects EF-1 from the inactivation observed in the presence of GTP. These data indicate that an interaction of reticulocyte EF-1 with GTP and aminoacyl-tRNA occurs; however, attempts to demonstrate the formation of a stable ternary complex by chromatography on Sephadex G-150 were unsuccessful. Also, no difference is observed between the rate of binding of aminoacyl-tRNA to reticulocyte ribosomes obtained with EF-1 and the rate obtained with EF-1 that had been incubated previously with GTP and aminoacyltRNA.  相似文献   

7.
The effect of the mucopolysaccharide heparin on elongation factor 1 (EF-1) from embryos of the brine shrimp Artemia salina was investigated. Heparin was found to be a potent inhibitor of the purified enzyme in binding aminoacyl-tRNA to ribosomes and had a comparable effect on polyuridylic acid dependent polyphenylanine synthesis. However, no effect on the binding of GTP to EF-1 or the ability of the factor to form a ternary complex with GTP and aminoacyl-tRNA was observed, suggesting that heparin interferes with the ribosome-attachment site on the ternary complex. In addition EF-1 bound to heparin-Sepharose gels and such gels could be used to partially purify the factor from post-ribosomal supernatant fractions.  相似文献   

8.
A technique that permitted the reversible dissociation of rat liver ribosomes was used to study the difference in protein-synthetic activity between liver ribosomes of normal and hypophysectomized rats. Ribosomal subunits of sedimentation coefficients 38S and 58S were produced from ferritin-free ribosomes by treatment with 0.8m-KCl at 30 degrees C. These recombined to give 76S monomers, which were as active as untreated ribosomes in incorporating phenylalanine in the presence of poly(U). Subunits from normal and hypophysectomized rats were recombined in all possible combinations and the ability of the hybrid ribosomes to catalyse polyphenylalanine synthesis was measured. The results show that the defect in ribosomes of hypophysectomized rats lies only in the small ribosomal subunit. The 40S but not the 60S subunit of rat liver ribosomes bound poly(U). The only requirement for the reaction was Mg(2+), the optimum concentration of which was 5mm. No apparent difference was seen between the poly(U)-binding abilities of 40S ribosomal subunits from normal or hypophysectomized rats. Phenylalanyl-tRNA was bound by 40S ribosomal subunits in the presence of poly(U) by either enzymic or non-enzymic reactions. Non-enzymic binding required a Mg(2+) concentration in excess of 5mm and increased linearly with increasing Mg(2+) concentrations up to 20mm. At a Mg(2+) concentration of 5mm, GTP and either a 40-70%-saturated-(NH(4))(2)SO(4) fraction of pH5.2 supernatant or partially purified aminotransferase I was necessary for binding of aminoacyl-tRNA. Hypophysectomy of rats resulted in a decreased binding of aminoacyl-tRNA by 40S ribosomal subunits.  相似文献   

9.
The eukaryotic initiation factor (eIF)-5 mediates hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. The eIF-2.GDP formed under these conditions is released from the 40 S ribosomal subunit while initiator Met-tRNA(f) remains bound. The released eIF-2.GDP can participate in an eIF-2B-catalyzed GDP/GTP exchange reaction to reform the Met-tRNA(f).eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were also present in an eIF-5-catalyzed reaction, the eIF-2.GDP produced remained bound to the 60 S ribosomal subunit of the 80 S initiation complex. When such an 80 S initiation complex, containing bound eIF-2.GDP, was incubated with GTP and eIF-2B, GDP was released. However, eIF-2 still remained bound to the ribosomes and was unable to form a Met-tRNA(f)l.eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were preincubated with either free eIF-2 or with eIF-2.eIF-2B complex and then added to a reaction containing both the 40 S initiation complex and eIF-5, the eIF-2.GDP produced did not bind to the 60 S ribosomal subunits but was released from the ribosomes. Thus, the 80 S initiation complex formed under these conditions did not contain bound eIF-2.GDP. Under similar experimental conditions, preincubation of 60 S ribosomal subunits with purified eIF-2B (free of eIF-2) failed to cause release of eIF-2.GDP from the ribosomal initiation complex. These results suggest that 60 S ribosome-bound eIF-2.GDP does not act as a direct substrate for eIF-2B-mediated release of eIF-2 from ribosomes. Rather, the affinity of 60 S ribosomal subunits for either eIF-2, or the eIF-2 moiety of the eIF-2.eIF-2B complex, prevents association of 60 S ribosomal subunits with eIF-2.GDP formed in the initiation reaction. This ensures release of eIF-2 from ribosomes following hydrolysis of GTP bound to the 40 S initiation complex.  相似文献   

10.
The present study has examined the requirements for the binding of rabbit reticulocyte elongation factor 1 (EF-1) to ribosomes under different assay conditions. When a centrifugation procedure was used to separate the ribosome EF-1 complex, the binding of EF-1 to ribosomes required GTP and Phe-tRNA, but not poly(U). The results suggested that undr these conditions a ternary complex, EF-1 . GTP . aminoacyl-tRNA, is necessary for the formation of a ribosome . EF-1 complex. However, when gel filtration was used to isolate the ribosome . EF-1 complex, only template and tRNA were required. These studie emphasize the fact that the procedure used to isolate the ribosome . EF-1 complex determines the requirements for stable complex formation. EF-1 can also interact with nucleic acids such as 28 S and 18 S rRNA, messenger RNA and DNA. In contrast to the binding to ribosomes, EF-1 binding to nucleic acids requires only Mg2+.  相似文献   

11.
The roles of Co-eIF-2, Co-eIF-2A80, and GDP in ternary complex and Met-tRNAf X 40 S initiation complex formation were studied. 1) Partially purified eukaryotic initiation factor 2 (eIF-2) (50% pure) preparations contained 0.4-0.6 pmol of bound GDP/pmol of eIF-2. eIF-2 purity was calculated from ternary complex formation in the absence of Mg2+ and in the presence of excess Co-eIF-2. 2) In the absence of Mg2+, approximately 30% of the potentially active eIF-2 molecules formed ternary complexes, and both Co-eIF-2 and Co-eIF-2A80 were equally effective in full activation of the eIF-2 molecules for ternary complex formation. 3) In the presence of Mg2+, approximately 10% of the potentially active eIF-2 molecules formed ternary complexes in the absence of ancillary factors, and the ancillary factors Co-eIF-2A80 and Co-eIF-2 raised the incorporation to 20 and 50% of the eIF-2 molecules, respectively. 4) In the absence of Mg2+, [3H]GDP in preformed eIF-2 X [3H]GDP was readily displaced by GTP during ternary complex formation. 5) In the presence of Mg2+, [3H]GDP remained tightly bound to eIF-2 and ternary complex formation was inhibited. Co-eIF-2, but not Co-eIF-2A80, was effective in promoting [3H]GDP displacement and the former was more effective in promoting ternary complex formation than the latter. 6) eIF-2 X [3H]GDP was converted to eIF-2 X [3H] GTP by incubation in the presence of nucleoside-5'-diphosphate kinase and ATP, but the eIF-2 X [3H]GTP thus formed did not bind Met-tRNAf in the presence of Mg2+ and required exogeneous addition of Co-eIF-2 and GTP for ternary complex formation and GTP displacement. 7) In the absence of Mg2+, the increased ternary complex formed in the presence of eIF-2 X [3H] GDP and Co-eIF-2A80 (with accompanying loss of [3H] GDP) was inactive in a subsequent reaction, which involves Met-tRNAf transfer to 40 S ribosomes (in the presence of Mg2+), and required trace amounts of Co-eIF-2 for such activity. Based on the above observations, we have suggested a two-step activation of eIF-2 molecules by the Co-eIF-2 protein complex for functional ternary complex formation. One of these steps involves the Co-eIF-2A component of Co-eIF-2. This activation results in stimulated Met-tRNAf binding to eIF-2 and is most apparent in the absence of Mg2+ and with aged eIF-2 molecules.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
J A Langer  F Jurnak  J A Lake 《Biochemistry》1984,23(25):6171-6178
A complex between elongation factor Tu (EF-Tu), GTP, phenylalanyl-tRNA (Phe-tRNA), oligo(uridylic acid) [oligo(U)], and the 30S ribosomal subunit of Escherichia coli has been formed and isolated. Binding of the EF-Tu complex appears to be at the functionally active 30S site, by all biochemical criteria that were examined. The complex can be isolated with 0.25-0.5 copy of EF-Tu bound per ribosome. The binding is dependent upon the presence of both the aminoacyl-tRNA and the cognate messenger RNA. Addition of 50S subunits to the preformed 30S-EF-Tu-GTP-Phe-tRNA-oligo(U) complex ("30S-EF-Tu complex") causes a rapid hydrolysis of GTP. This hydrolysis is coordinated with the formation of 70S ribosomes and the release of EF-Tu. Both the release of EF-Tu and the hydrolysis of GTP are stoichiometric with the amount of added 50S subunits. 70S ribosomes, in contrast to 50S subunits, neither release EF-Tu nor rapidly hydrolyze GTP when added to the 30S-EF-Tu complexes. The inability of 70S ribosomes to react with the 30S-EF-Tu complex argues that the 30S-EF-Tu complex does not dissociate prior to reaction with the 50S subunit. The requirements of the 30S reaction for Phe-tRNA and oligo(U) and the consequences of the addition of 50S subunits resemble the reaction of EF-Tu with 70S ribosomes, although EF-Tu binding to isolated 30S subunits does not occur during the elongation microcycle. This suggests that the EF-Tu ternary complex binds to isolated 30S subunits at the same 30S site that is occupied during ternary complex interaction with the 70S ribosome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The exchange of elongation factor Tu (EF-Tu)-bound GTP in the presence and absence of elongation factor Ts (EF-Ts) was monitored by equilibrium exchange kinetic procedures. The kinetics of the exchange reaction were found to be consistent with the formation of a ternary complex EF-Tu X GTP X EF-Ts. The equilibrium association constants of EF-Ts to the EF-Tu X GTP complex and of GTP to EF-Tu X EF-Ts were calculated to be 7 X 10(7) and 2 X 10(6) M-1, respectively. The dissociation rate constant of GTP from the ternary complex was found to be 13 s-1. This is 500 times larger than the GTP dissociation rate constant from the EF-Tu X GTP complex (2.5 X 10(-2) s-1). A procedure based on the observation that EF-Tu X GTP protects the aminoacyl-tRNA molecule from phosphodiesterase I-catalyzed hydrolysis was used to study the interactions of EF-Tu X GTP with Val-tRNAVal and Phe-tRNAPhe. Binding constants of Phe-tRNAPhe and Val-tRNAVal to EF-Tu X GTP of 4.8 X 10(7) and 1.2 X 10(7)M-1, respectively, were obtained. The exchange of bound GDP with GTP in solution in the presence of EF-Ts was also examined. The kinetics of the reaction were found to be consistent with a rapid equilibrium mechanism. It was observed that the exchange of bound GDP with free GTP in the presence of a large excess of the latter was accelerated by the addition of aminoacyl-tRNA. On the basis of these observations, a complete mechanism to explain the interactions among EF-Tu, EF-Ts, guanine nucleotides, and aminoacyl-tRNA has been developed.  相似文献   

14.
70 S ribosomes were programmed with initiator tRNA and messenger oligonucleotides AUG(U)n and AUG(C)n, where n = 1, 2 or 3. The binding of the ternary complexes [Phe-tRNA X EF-Tu X GTP] and [Pro-tRNA X EF-Tu X GTP] to the programmed ribosomes was studied. If codon-anticodon interaction is restricted to only one basepair, the ternary complex leaves the ribosome before GTP hydrolysis. Two basepairs allow hydrolysis of GTP, but the aminoacyl-tRNA dissociates and is recycled, resulting in wastage of GTP. Three basepairs result in apparently stable binding of aminoacyl-tRNA to the ribosome. The antibiotic sparsomycin weakens the binding by an amount roughly equivalent to one messenger base, while viomycin has the reverse effect.  相似文献   

15.
Phe-tRNA from yeast has a highly modified nucleoside, called Y, adjacent to the 3′ side of its anticodon, that can be removed or replaced with proflavine. In a protein-synthesizing system from rabbit reticulocytes, poly (U)-directed binding and polyphenylalanine synthesis are low with these modified Phe-tRNA species relative to the corresponding values with unmodified Phe-tRNA. However, polymerization can be increased with relatively large amounts of elongation factor I. The modified Phe-tRNA species bound to the ribosomes with poly(U) either in the presence or absence of elongation factor I and GTP is immediately reactive in the peptidyl transferase reaction measured by the formation of diphenylalanine or phenylalanyl-puromycin. It appears to have been bound directly into the donor ribosomal site by either the nonenzymatic mechanism involving Mg2+ or by the enzymatic mechanism involving EF-I and GTP.  相似文献   

16.
1. A protein factor promoting the binding of initiator tRNA to the 40S ribosomal subunit was purified to homogeneity (more than 2500-fold) from rat liver cytosol. It has a mol.wt. of 265000 and is composed of four subunits of identical molecular weight. 2. This factor directs the binding of methionyl-tRNA(fMet) and to a lesser extent also of N-acetylphenylalanyl-tRNA, but not of methionyl-tRNA(Met) or phenylalanyl-tRNA, to the smaller ribosomal subunit at high concentrations of GTP (8-10mm) with an optimum at pH4.0. As evidenced by sucrose-density-gradient centrifugation, initiator tRNA becomes bound to the 40S subunit or to 80S ribosomes. 3. A deacylase activity specific for methionyl-tRNA(fMet) is associated with the pure factor. The factor significantly stimulates the translation of natural message in systems containing polyribosomes and both purified peptide-elongation factors. 4. The factor binds initiator tRNA or GTP to form unstable binary complexes and forms a ternary complex with methionyl-tRNA(fMet) and GTP. This complex is relatively stable. 5. In the absence of any cofactors the factor forms a stable complex with 40S and 80S ribosomes. This preformed ribosomal complex binds efficiently initiator tRNA at pH7.5 and low concentrations of GTP (1-2mm). The ternary complex of the factor with methionyl-tRNA(fMet) and GTP may be liberated from this ribosomal complex. 6. A protein factor capable of promoting the binding and simultaneously the deacylation of initiator tRNA may apparently have a regulatory function in physiological gene translation by removing an excess of methionyl-tRNA(fMet) not required for translation.  相似文献   

17.
Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites   总被引:63,自引:0,他引:63  
D Moazed  H F Noller 《Cell》1989,57(4):585-597
Three sets of conserved nucleotides in 23 rRNA are protected from chemical probes by binding of tRNA to the ribosomal A, P, and E sites, respectively. They are located almost exclusively in domain V, primarily in or adjacent to the loop identified with the peptidyl transferase function. Some of these sites are also protected by antibiotics such as chloramphenicol, which could explain how these drugs interfere with protein synthesis. Certain tRNA-dependent protections are abolished when the 3'-terminal A or CA or 2',3'-linked acyl group is removed, providing direct evidence for the interaction of the conserved CCA terminus of tRNA with 23S rRNA. When the EF-Tu.GTP.aminoacyl-tRNA ternary complex is bound to the ribosome, no tRNA-dependent A site protections are detected in 23S rRNA until EF-Tu is released. Thus, EF-Tu prevents interaction of the 3' terminus of the incoming aminoacyl-tRNA with the peptidyl transferase region of the ribosome during anticodon selection, thereby permitting translational proofreading.  相似文献   

18.
Studies on elongation factor II from calf brain   总被引:4,自引:0,他引:4  
Elongation factor II (EF2) has been purified from calf brain, and its reactions with guanosine nucleotides and ribosomes have been studied. Its behavior is, in general, similar to that observed with EF2 from other eukaryote sources. Thus, in the presence of GTP or GDP, EF2 interacts with ribosomes to form a ribosome-EF2-GDP complex. Fusidic acid has little effect on the stability of this complex, which suggests that it is more stable than the corresponding complex from prokaryote systems. As assayed by a nitrocellulose filter technique, only GTP, GDP, dGTP and GDPCP are bound to ribosomes dependent on EF2. In the absence of ribosomes, an EF2-GTP or EF2-GDP complex can be detected. Fusidic acid at relatively high concentrations inhibits their formation, but diphtheria toxin in the presence of NAD does not. The EF2-GTP complex has been separated from unbound GTP by gel filtration, and the reactivity of the complex with ribosomes has been investigated. When EF2-GTP is incubated with ribosomes, GTP hydrolysis occurs, and evidence for a ribosome-EF2-GDP complex has been obtained. The results thus suggest that the EF2-GTP complex may be an intermediate in the binding of EF2 to ribosomes. Based on molecular sieve chromatography, it appears that the stability of these complexes is ribosome-EF2-GDP > EF2-GTP > EF2-GDP.  相似文献   

19.
Elongation factor EF1 was found in a low salt homogenate of wheat embryos, either in the 100 000 X g supernatant or in the ribosome pellet. The ribosome-linked EF1 (EF1R), deteched by high salt washing, was purified to electrophoretical homogenetiy and its molecular and functional properties compared to those of a purified high molecular weight species of EF1 obtained from cytoplasm (EF1H). The two forms are associations of different polypeptides having in common only the polypeptide which can form the ternary complex with aminoacyl-tRNA and GTP. Whereas EF1R is able to fulfill all the EF1 functions, EF1H, incubated with ribosomes completely deprived of elongation factors, can catalyze the aminoacyl-tRNA binding to ribosomes, but, in the presence of EF2, forms only a very small amount of poly(Phe).  相似文献   

20.
A low molecular weight form of the eukaryotic polypeptide chain elongation factor 1 (EF-1α) has been extensively purified from pig liver to give an apparently homogeneous preparation, which seemed to be analogous to the bacterial elongation factor, EF-Tu (Iwasaki, K., Nagata, S., Mizumoto, K., and Kaziro, Y. (1974) J. Biol. Chem. 249, 5008). Thus, the interaction of the purified EF-1α with guanine nucleotides as well as aminoacyl-tRNA has been investigated and the following results have been obtained. (1) EF-1α when kept in the absence of glycerol lost its activity to promote the binding of aminoacylt-RNA to ribosomes though it retained the ability to bind guanine nucleotides. However, the former activity could be stabilized by the addition of 25% (vv) glycerol to the solution. (2) EF-1α formed a binary complex with guanine nucleotides such as GTP, GDP, 5′-guanylyl methylenediphosphonate or 5′-guanylyl imidodiphosphate. The molar ratio of EF-1α to GTP or GDP in the binary complex was shown to be 1. (3) The presence of a ternary complex containing EF-1α, GTP and aminoacyl-tRNA was demonstrated by several methods, i.e., (i) an increased heat stability of EF-1α in the presence of GTP and Phe-tRNA, (ii) a decrease in the amount of the EF-1α·GTP complex in the presence of aminoacyl-tRNA, (iii) a protection of the ester linkage of Phe-tRNA from hydrolysis at alkaline pH by the presence of both EF-1α and GTP, and (iv) the isolation of the complex by gel filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号