首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reconstituted dynein-driven, dynactin-dependent vesicle transport using protein-free liposomes and soluble components from squid axoplasm. Dynein and dynactin, while necessary, are not the only essential cytosolic factors; axonal spectrin is also required. Spectrin is resident on axonal vesicles, and rebinds from cytosol to liposomes or proteolysed vesicles, concomitant with their dynein-dynactin-dependent motility. Binding of purified axonal spectrin to liposomes requires acidic phospholipids, as does motility. Using dominant negative spectrin polypeptides and a drug that releases PH domains from membranes, we show that spectrin is required for linking dynactin, and thereby dynein, to acidic phospholipids in the membrane. We verify this model in the context of liposomes, isolated axonal vesicles, and whole axoplasm. We conclude that spectrin has an essential role in retrograde axonal transport.  相似文献   

2.
We have investigated by electron spin resonance, at 37 degrees C, the outside-inside passage and the equilibrium distribution of spin-labeled phospholipids, respectively, in ATP-containing ghosts, in heat-treated erythrocytes, and in heat-induced vesicles. The heat-treated vesicles were spectrin depleted to approximately 25% of the original content and had lost almost 100% of the other cytoskeletal proteins. Yet the vesicles, as long as they contained ATP, were capable of translocating the aminophospholipids with the same efficiency as the heat-treated erythrocytes, and almost with the same efficiency as ATP-containing ghosts. In the vesicles, sphingomyelin and phosphatidylcholine analogues underwent a very slow transverse diffusion as in native cells. We conclude that spectrin and other cytoskeleton proteins are not major factors for the establishment and maintenance of phospholipid asymmetry in human erythrocytes, which may be chiefly due to the aminophospholipid translocase activity.  相似文献   

3.
We have demonstrated a differential association between two types of spectrin, from erythrocytes and brain, with two types of intermediate filaments, vimentin filaments and neurofilaments. Electron microscopy showed that erythrocyte spectrin promoted the binding of vimentin filaments to red cell inside-out vesicles via lateral associations with the filaments. In vitro binding studies showed that the association of spectrin with vimentin filaments was apparently saturable, increased with temperature, and could be prevented by heat denaturation of the spectrin. Comparisons were made between erythrocyte and brain spectrin binding to both vimentin filaments and neurofilaments. We found that vimentin filaments bound more erythrocyte spectrin than brain spectrin, while neurofilaments bound more brain spectrin than erythrocyte spectrin. Our results show that both erythroid and nonerythroid spectrins are capable of binding to intermediate filaments and that such associations may be characterized by differential affinities of the various types of spectrin with the several classes of intermediate filaments present in cells. Our results also suggest a role for both erythroid and nonerythroid spectrins in mediating the association of intermediate filaments with plasma membranes or other cytoskeletal elements.  相似文献   

4.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the β-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

5.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the beta-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

6.
A recent study from our laboratory on the sea urchin egg suggested that spectrin was not solely restricted to the plasma membrane, but instead had a more widespread distribution on the surface of a variety of membranous inclusions. (E. M. Bonder et al., 1989, Dev. Biol. 134, 327-341). In this report we extend our initial findings and provide experimental and ultrastructural evidence for the presence of spectrin on three distinct classes of cytoplasmic vesicles. Immunoblot analysis of membrane fractions prepared from egg homogenates establishes that spectrin coisolates with vesicle-enriched fractions, while indirect immunofluorescence microscopy on cryosections of centrifugally stratified eggs demonstrates that spectrin specifically associates with cortical granules, acidic vesicles, and yolk platelets in vivo. Immunogold ultrastructural localization of spectrin on cortices isolated from eggs and early embryos details the striking distribution of spectrin on the cytoplasmic surface of the plasma membrane and the membranes of cortical granules, acidic vesicles, and yolk platelets, while quantitative studies show that relatively equivalent amounts of spectrin are present on the different membrane surfaces both before and after fertilization. These data, in combination with the localization of numerous spectrin crosslinks between actin filaments in surface microvilli, suggest that spectrin plays a pivotal role in structuring the cortical membrane-cytoskeletal complex of the egg and the embryo.  相似文献   

7.
The intracellular precipitation of nonerythrocyte spectrin has been achieved by the microinjection into cells of either a monoclonal antibody (IgM) directed against the alpha chain of nonerythrocyte spectrin or an affinity-purified polyclonal antibody raised against bovine brain spectrin (fodrin). This antibody-induced precipitation of spectrin was observed in fibroblastic and epithelial cell types, including embryonic bovine tracheal fibroblasts, a bovine kidney epithelial cell line (MDBK), Hela cells, gerbil fibroma cells, and fibroblast lines of human and mouse origins. The precipitation of the spectrin was specific and two proteins with a similar distribution to the nonerythrocyte spectrin were not induced to co-precipitate in the spectrin aggregates. Comparing the two types of antibody microinjected, the affinity-purified polyclonal antibody resulted in more compact aggregates of spectrin and these were frequently aligned with microfilament bundles. The rate at which the spectrin aggregates were cleared into presumptive lysosomes varied with different cell types: in some such as the bovine kidney epithelial cells, this appeared complete within 3 h after microinjection, whereas in some of the fibroblasts the spectrin aggregates were prominent in the cytoplasm at 24 and even 48 h after microinjection. Microfilament bundles appeared unaffected by the aggregation of spectrin. We conclude that the integrity of the actin microfilament bundles does not require nonerythrocyte spectrin and that most probably these structures are linked at their termini to the membrane through proteins other than nonerythrocyte spectrin. No effect of the intracellular spectrin precipitation was observed on cell shape, or on the distribution of coated vesicles or microtubules. The aggregation of the nonerythrocyte spectrin, however, did affect the distribution of the vimentin type of intermediate filaments in most of the cell types studied. These filaments became more distorted and condensed, but generally did not collapse around the nucleus as occurs following microtubule disruption induced by colchicine treatment. The clumped intermediate filaments were frequently seen to coincide with regions of aggregated spectrin. This aggregation of intermediate filaments was not induced by microinjection of irrelevant antibodies, nor was it induced by the monoclonal antibody against spectrin in cells with which it did not cross-react.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The phospholipid organization in unilamellar vesicles comprised of various purified phospholipid components of monkey erythrocyte membrane was ascertained using phospholipase A2 and trinitrobenzenesulfonic acid as external membrane probes. The vesicles were formed by sonication or detergent dialysis and fractionated by centrifugation or gel permeation chromatography. Experiments were done to confirm that the phospholipase A2 treatments did not cause lysis or induce fusion of the vesicles. This enzyme hydrolysed only the glycerophospholipids in the outer surface of the vesicles. The amounts of the external phospholipids determined by this enzymatic method were verified using the chemical probe, trinitrobenzenesulfonic acid. The choline-containing phospholipids and phosphatidylethanolamine localized randomly in the two surfaces of sonicated vesicles (outer diameter, about 30 nm), whereas phosphatidylserine preferentially distributed in the inner monolayer. This phosphatidylserine asymmetry virtually disappeared in detergent dialysed vesicles (outer diameter, about 45 nm). Furthermore, inclusion of cholesterol in both the types of vesicles resulted in more random glycerophospholipid distributions across the plane of vesicles bilayer, presumably due to the cholesterol-induced increases in the size of vesicles. These results demonstrate that the transbilayer distribution of erythrocyte membrane phospholipids in unilamellar vesicles are controlled mainly by the surface curvature rather than by interlipid interactions, and therefore suggest that phospholipid-phospholipid and phospholipid-cholesterol interactions should not play any significant role in determining the membrane phospholipid asymmetry in red cells. It is proposed that this asymmetry primarily originates from differential bindings of phospholipids with membrane proteins in the two leaflets of the membrane bilayer.  相似文献   

9.
A specific association between spectrin and the inner surface of the human erythrocyte membrane has been examined by measuring the binding of purified [32P]spectrin to inside out, spectrin-depleted vesicles and to right side out ghost vesicles. Spectrin was labeled by incubating erythrocytes with 32Pi, and eluted from the ghost membranes by extraction in 0.3 mM NaPO4, pH 7.6. [32P]Spectrin was separated from actin and other proteins and isolated in a nonaggregated state as a So20,w = 7 S (in 0.3 mM NaPO4) or So20,w = 8 S (in 20 mM KCl, 0.3 mM NaPO4) protein after sedimentation on linear sucrose gradients. Binding of [32P]spectrin to inverted vesicles devoid of spectrin and actin was at least 10-fold greater than to right side out membranes, and exhibited different properties. Association with inside out vesicles was slow, was decreased to the value for right side out vesicles at high pH, or after heating spectrin above 50 degrees prior to assay, and was saturable with increasing levels of spectrin. Binding to everted vesicles was rapid, unaffected by pH or by heating spectrin, and rose linearly with the concentration of spectrin. Scatchard plots of binding to inverted vesicles were linear at pH 7.6, with a KD of 45 microng/ml, while at pH 6.6, plots were curvilinear and consistent with two types of interactions with a KD of 4 and 19 microng/ml, respectively. The maximal binding capacity at both pH values was about 200 microng of spectrin/mg of membrane protein. Unlabeled spectrin competed for binding with 50% displacement at 27 microng/ml. [32P]Spectrin dissociated and associated with inverted vesicles with an identical dependence on ionic strength as observed for elution of native spectrin from ghosts. MgCl2, CaCl2 (1 to 4 mM) and EDTA (0.5 to 1 mM) had little effect on binding in the presence of 20 mM KCl, while at low ionic strength, MgCl2 (1 mM) increased binding and inhibited dissociation to the same extent as 10 to 20 mM KCl. Binding was abolished by pretreatment of vesicles with 0.1 M acetic acid, or with 0.1 microng/ml of trypsin. The periodic acid-Schiff-staining bands were unaffected by trypsin digestion which destroyed binding; mild digestion, which decreased binding only 50%, converted Band 3 almost completely to a membrane-bound 50,000-dalton fragment resistant to further proteolysis. These experiments suggest that attachment of spectrin to the cytoplasmic surface of the membrane results from a selective protein-protein interaction which is independent of erythrocyte actin. A direct role of the major sialoglycoprotein or Band 3 as a membrane binding site appears unlikely.  相似文献   

10.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (B(max)) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in deltapi change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The deltapi change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a "raft-like" mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

11.
ATP-induced endocytosis in human erythrocyte ghosts has been studied, and a procedure for the isolation of the endocytotic vesicles is described. Under isotonic conditions and 37 degrees C, optimal endocytosis occurs with concentrations of 4 to 10 mM MgATP. Within 30 min, up to 45% of the membrane is removed from the surface and converted into sealed inside-out vesicles. Local anesthetics, such as chlorpromazine, potentiate ATP-induced endocytosis in ghosts. Forcing cells containing endocytotic vesicles through a hypodermic needle leads to the exclusive fragmentation of the outermost plasma membrane. The endocytosed vesicles can then be separated from these fragments by centrifugation on a gradient of dextran T70. Biochemical analyses indicate that endocytotic vesicles contain full complements of the major membrane proteins (i.e. also spectrin and actin), common phospholipids, fatty acids, and cholesterol. Furthermore, they exhibit a fully intact spectrin component 2 phosphorylation machinery. In contrast, MgATPase activity is largely excluded from these vesicles. The novel inside-out vesicles described have properties different from those of previously analyzed fragments of the erythrocyte membrane. They will permit a detailed study of a native spectrin-actin network now exposed to the outside.  相似文献   

12.
Spectrin, the major cytoskeletal protein in erythrocytes, is localized on the inner membrane surface in association with membrane-spanning glycoproteins and with intramembrane particles. The presence of a specific, high-affinity protein binding site for spectrin on the cytoplasmic surface of the membrane has been established by measurement of reassociation of spectrin with spectrin-depleted inside-out vesicles. A 72,000 Mr proteolytic fragment of this attachment protein has been purified, which bound to spectrin in solution and competed for reassociation of spectrin with vesicles. A 215,000 Mr polypeptide has been identified as the precursor of the spectrin-binding fragment. The membrane attachment protein for spectrin was named ankyrin, and has been purified and characterized. Ankyrin has been demonstrated to be tightly associated in detergent extracts of vesicles with band 3, a major membrane-spanning polypeptide, and to bind directly to a proteolytic fragment derived from the cytoplasmic domain of band 3. Ankyrin is thus an example of a protein that directly links a cytoplasmic structural protein to an integral membrane protein. The organization of the erythrocyte membrane has implications for more complex cell types since immunoreactive forms of ankyrin distinct from myosin or filamin have been detected by radioimmunoassay in a variety of cells and tissues. Indirect immunofluorescent staining of cultured cells reveals immunoreactive forms of ankyrin in a cytoplasmic meshwork and in a punctate distribution over nuclei. The staining changes dramatically during mitosis, with concentration of stain at the spindle poles in metaphase and intense staining of the cleavage furrow during cytokinesis.  相似文献   

13.
At neutral pH spectrin induces modest leakage of trapped calcein from reverse-phase or extruded, but not sonicated, vesicles composed of phosphatidylserine, but not phosphatidylcholine. The extent of leakage from extruded vesicles is not or is only slightly affected by magnesium ions at a physiological concentration or calcium ions at a greater than physiological concentration, respectively. In addition to accounting for several previously discrepant observations on the lytic effects of spectrin, these findings indicate that some proteins like spectrin may destabilize vesicles with low curvature more readily than vesicles of high curvature, in contrast to certain amphiphilic peptides. 60% less leakage is induced from phosphatidylserine vesicles by heat-denatured than by native spectrin. In contrast, both trypsin- and subtilisin-treated spectrins, if sufficiently digested, induce several-fold more leakage than undigested spectrin. Since spectrin prepared either by 1 M Tris dissociation of Triton-extracted cytoskeletons or by low ionic strength extraction of ghosts released the same amounts of calcein from vesicles of various compositions, these effects are unlikely to reflect artifacts of spectrin preparation. Furthermore, spectrin is unlikely to promote leakage in vivo, since vesicles composed of phosphatidylserine, cholesterol and/or phosphatidylethanolamine, which constitute the lipid composition of the inner monolayer of the red cell membrane, did not leak on addition of spectrin, whereas vesicles composed of phosphatidylserine and phosphatidylcholine, did leak in the presence of spectrin.  相似文献   

14.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (Bmax) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in Δπ change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The Δπ change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a “raft-like” mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

15.
The bi-directional movement of pigment granules in frog melanophores involves the microtubule-based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin II and myosin V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150(glued) and Arp1/centractin, co-localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co-immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   

16.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

17.
The role of band 4.1 in the association of actin with erythrocyte membranes   总被引:8,自引:0,他引:8  
Spectrin stimulates the association of F-actin with erythrocyte inside-out vesicles. Although inside-out vesicles are nearly devoid of two of the three major cytoskeletal proteins, spectrin and actin, they retain nearly all of the cytoskeletal protein designated band 4.1. Inside-out vesicles which have been substantially depleted of band 4.1 by extraction in 1 M KCl, 0.4 M urea and then reconstituted with spectrin show a markedly diminished ability to bind actin by comparison with vesicles containing normal amounts of band 4.1. This diminution is not due to an impaired ability of the vesicles to bind spectrin. Addition of purified band 4.1 to vesicles either before or after they have been reconstituted with spectrin restores their actin binding capacity to near normal levels as does addition of a spectrin-band 4.1 complex prepared by sucrose gradient centrifugation. Band 4.1 bound to vesicles in the absence of added spectrin has no effect on actin binding. Our results suggest that a spectrin band 4.1 complex is responsible for binding actin to erythrocyte membranes.  相似文献   

18.
The interaction of water-soluble nonmembraneous proteins (trypsin and the basic pancreatic trypsin inhibitor (BPTI)) with soybean phospholipids was studied using multilamellar vesicles. Multilamellar vesicles were obtained from soybean lipid extracts and mixtures of individual phospholipids based on phosphatidylcholine. These mixtures contain different phospholipids: "bilayer", "nonbilayer", and negatively charged. It was shown that the content of both proteins in the complex depends on pH and the presence of negatively charged components. On the basis of this finding, the conclusion about the electrostatic nature of lipid-protein interaction was made. The structural organization of soybean phospholipids in multilamellar vesicles was studied in the presence and absence of the proteins using broad-line 31P-NMR spectroscopy. It was found that, in mixtures of phospholipids of complex composition, different types of phases coexist, and phospholipids of different classes can compensate the effects of each other. Trypsin and BPTI affect the structure of phospholipids in a similar way, inducing considerable structural changes in multilamellar vesicles of preparations containing negatively charged components in whose structure there coexisted primordially the bilayer and isotropic phases.  相似文献   

19.
The bi‐directional movement of pigment granules in frog melanophores involves the microtubule‐based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin  II and myosin  V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin  II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150glued and Arp1/centractin, co‐localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co‐immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   

20.
Anilinonaphtyl labeled spectrin exhibits a fluorescence emission spectrum characteristic of a highly hydrophobic environment. Quenching of the fluorescence intensity by nitroxide analogs of fatty acids of affinity 10(4) M-1 reveals that the sites of interaction of fatty acids lie very close to the anilinonaphtyl groups. Similar experiments performed with a nitroxide analog of phosphatidylserine yield a 30% quenching of fluorescence while the same phosphatidylcholine analog has essentially no effect. The changes in the fluorescence emission spectrum exhibited in the presence of sonicated phosphatidylserine vesicles further outline the specificity of interaction towards phosphatidylserine, with one spectrin binding site per about 750 exposed phospholipids. Moreover, they suggest a penetration of the anilinonaphtyl group into the lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号