首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Cocaine N-demethylation by microsomal cytochrome P450s is the principal pathway in cocaine bioactivation and hepatotoxicity. P450 isozymes involved in N-demethylation of cocaine have not been elucidated yet and they differ from species to species. In humans and mice, P4503A contributes to cocaine N-demethylase activity, whereas in rats, both P4503A and P4502B participate. In the present study, contribution of different P450 isozymes to cocaine N-demethylase activity was studied in vitro with fish liver microsomes. The specific cocaine N-demethylase activity was found to be 0.672 +/- 0.22 nmol formaldehyde formed/min/mg protein (mean +/- SD, n = 6). Cocaine N-demethylase exhibited biphasic kinetics, and from the Lineweaver-Burk plot, two K(m) values were calculated as 0.085 and 0.205 mM for the high- and low-affinity enzyme. These results indicate that N-demethylation of cocaine in mullet liver microsomes is catalyzed by at least two cytochrome P450 isozymes. Inhibitory effects of cytochrome P450 isozyme-selective chemical inhibitors, ketoconazole, cimetidine, SKF-525A, and quinidine, on cocaine N-demethylase activity were studied at 50, 100, and 500 micro M concentrations of these inhibitors. At 100 micro M final concentrations, ketoconazole (P4503A inhibitor), SKF-525A (inhibitor of both P4502B and P4503A), and cimetidine (P4503A inhibitor) inhibited N-demethylation activity by 73, 69, and 63%, respectively. Quinidine, P4502D-specific inhibitor, at 100 micro M final concentration, reduced N-demethylation activity down to 64%. Aniline, a model substrate for P4502E1, did not alter N-demethylase activity in the final concentration of 100 micro M. IC(50) values were calculated to be 20 micro M for ketoconazole, 48 micro M for cimetidine (both specific P4503A inhibitors), 164 micro M for quinidine (P4502D inhibitor), and 59 micro M for SKF-525A (inhibitor of both P4503A and P4502B). The contribution of P4502B to cocaine N-demethylase activity in mullet liver microsomes was further explored by the use of purified mullet cytochrome P4502B in the reconstituted system containing purified mullet P450 reductase and lipid. The turnover number was calculated as 4.2 nmol HCOH/(min nmol P450). Overall, these results show that P4503A and P4502B are the major P450s responsible for N-demethylation of cocaine, whereas contribution of P4502D is a minor one, and P4502E1 is not involved in the N-demethylation of cocaine in mullet liver microsomes.  相似文献   

2.
NADPH-cytochrome P450 reductase was purified to electrophoretic homogeneity from detergent-solubilized liver microsomes from the leaping mullet (Liza saliens). The purified reductase was characterized with respect to spectral, electrophoretic, and biocatalytic properties. In addition, effects of pH, ionic strength, and the substrate concentration on the NADPH-dependent cytochrome c reductase activity of the purified fish liver cytochrome P450 reductase were studied. Cytochrome P450 reductase was purified 438-fold with a yield of 17.5% with respect to the initial amount present in the fish liver microsomes. The specific activity of the enzyme was found to be 52.6 μmol cytochrome c reduced per minute per mg protein. The monomer molecular weight of the purified enzyme was calculated to be 77,000 ± 1000 when electrophoresed on polyacrylamide gels under the denaturing conditions in the presence of SDS. The absorption spectrum of fish reductase showed two peaks at 378 and 455 nm. NADPH-dependent cytochrome c reductase activity of the purified Liza saliens liver cytochrome P450 reductase was found to be maximal when pH was between 7.4 and 7.8. The apparent Km of the purified enzyme was found to be 7.69 μM for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer, pH 7.7, at room temperature, and the enzyme was fully saturated by its substrate, cytochrome c, when the substrate concentration was at or above the 70 μM. Furthermore, the purified enzyme was biocatalytically active in reconstituting the 7-ethoxyresorufin O-deethylase activity in the reconstituted system containing purified mullet liver cytochrome P4501A1 and lipid. These results suggested that the purified fish liver cytochrome P450 reductase is similar to its mammalian counterparts with respect to spectral, electrophoretic, and biocatalytic properties. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 103–113, 1998  相似文献   

3.
NADPH-cytochrome P-450 reductase in rat testicular microsomal fraction was solubilized by trypsin, and purified to apparent homogeneity in polyacrylamide gel electrophoresis. Molecular weight of the enzyme was estimated to be about 70,000 by SDS-polyacrylamide gel electrophoresis. Km values were estimated as 18 microM for cytochrome c, 17 microM for dichlorophenol indophenol (DCPIP), 50 microM for K3Fe (CN)6 and 1.7 microM for NADPH. The cytochrome c reducing activity of the purified preparation was decreased by tetranitromethane (TNM), a reagent for nitration of tyrosine residues in a protein. The inactivation exhibited pseudo-first-order kinetics. A plot of log kapp vs log [TNM] gave a straight line with slope = 1.05, indicating the reaction of one modifier molecule in the inactivation process. The decrease of the reducing activities for DCPIP and K3Fe(CN)6 by TNM progressed more slowly than that for cytochrome c. The inactivation of cytochrome c reduction was protected completely by 0.1 mM NADP(H) and partially by 0.1 mM DCPIP and cytochrome c. No preventive change of the inactivation by TNM was observed by addition of NAD+ or testosterone. On the other hand, the differential modification by DTNB, TNM and DTT indicated that there were amino acid residues modified by TNM, such as tyrosine residues, at or near the active-site of the NADPH-cytochrome P-450 reductase.  相似文献   

4.
CYP1A is known to play important roles in the metabolism, detoxification and bioactivation of carcinogens and other xenobiotics in animals including fish. In our laboratory, CYP1A1 was obtained in a highly purified form with a specific content of 15-17 nmol P450 per mg protein from liver microsomes of feral fish, leaping mullet (Liza saliens). Purified mullet CYP1A1 showed a very high substrate specificities for 7-ethoxyresorufin and 7-methoxyresorufin in a reconstituted system containing purified fish P450 reductase and lipid. In addition, effects of each individual components of the reconstituted system, i.e., CYP1A1 and P450 reductase on 7-methoxyresorufin O-demethylase (MROD) activity were studied. 7-ethoxyresorufin O-deethylase (EROD) activity was strongly inhibited by alpha-naphthoflavone (ANF). At 0.5 and 2.5 microM. ANF inhibited EROD activity by 90 and 98%, respectively. Mullet CYP1A1 did not catalyze monooxygenations of other substrates such as aniline, ethylmorphine, N-nitrosodimethylamine and p-nitrophenol. Antibodies produced against CYP1A1 orthologues in fish such as trout and scup showed strong cross-reactivity with the purified mullet CYP1A1. In addition, anti-L. saliens liver CYP1A1 produced in our laboratory inhibited both the EROD and MROD activities catalyzed by L. saliens liver microsomes but stronger inhibition was observed with EROD activity. On the other hand, anti-mullet CYP1A1 antibodies showed very weak cross-reactivity with two proteins (presumably CYP1A1 and CYP1A2) in 3MC-treated rat liver microsomes. Moreover, 3MC-treated rat liver microsomal EROD activity was weakly inhibited by the anti-L. saliens liver CYP1A1. These results strongly suggested that the purified mullet CYP1A1 is structurally, functionally and immunochemically similar to the CYP1A1 homologues purified from other teleost species but functionally and immunochemically distinct from mammalian CYP1A1.  相似文献   

5.
NADPH-cytochrome P-450 reductase was purified to apparent homogeneity from detergent-solubilized guinea pig liver microsomes. The reductase had a mol. wt of 78,000 and contained one mole each of FAD and FMN. Electron transfer activity to cytochrome c was optimal at a pH of 8.0 and an ionic strength of 0.43. The results of kinetic experiments were consistent with a ternary-complex mechanism for the interaction of the reductase with cytochrome c and NADPH. Km values for NADPH and cytochrome c were 3.1 and 26.7 microM, respectively. Inhibition by NADP+ and 2'-AMP was competitive with respect to NADPH; Ki values were 12.1 microM for NADP+ and 46.7 microM for 2'-AMP.  相似文献   

6.
Recombinant house fly (Musca domestica) cytochrome P450 reductase has been purified by anion exchange and affinity chromatography. Steady-state kinetics of cytochrome c reductase activity revealed a random Bi-Bi mechanism with formation of a ternary P450 reductase-NADPH-electron acceptor complex as catalytic intermediate. NADP(H) binding is essential for fast hydride ion transfer to FAD, as well as for electron transfer from FMN to cytochrome c. Reduced cytochrome c had no effect on the enzyme activity, while NADP+ and 2'-AMP inhibited P450 reductase competitively with respect to NADPH and noncompetitively with respect to cytochrome c. The affinity of the P450 reductase to NADPH is 10 times higher than to NADP+ (Kd of 0.31 and 3.3 microM, respectively). Such an affinity change during catalysis could account for a +30 mV shift of the redox potential of FAD. Cys560 was substituted for Tyr by site-directed mutagenesis. This mutation decreased enzyme affinity to NADPH 35-fold by decreasing the bimolecular rate constant of nucleotide binding with no detectable effect on the kinetic mechanism. The affinity of the C560Y mutant enzyme to NADP+ decreased 9-fold compared to the wild-type enzyme, while the affinity to 2'-AMP was not significantly affected, suggesting that Cys560 is located in the nicotinamide binding site of the active, full-size enzyme in solution.  相似文献   

7.
NADPH-cytochrome c reductase was purified to electrophoretic homogeneity from detergent solubilized sheep lung microsomes. The specific activity of the purified enzyme ranged from 56 to 67 mumol cytochrome c reduced/min/mg protein and the yield was 48-52% of the initial activity in lung microsomes. The reductase had Mr of 78,000 and contained 1 mol each of FAD and FMN. Km values obtained in 0.3 M phosphate buffer, pH 7.8 at 37 degrees C for NADPH and cytochrome c were 11.1 +/- 0.70 microM and 20.0 +/- 2.15 microM. Lung reductase was inhibited by its substrate, cytochrome c when its concentration was above 160 microM. The lung reductase exhibited a ping-pong type kinetic mechanism for NADPH mediated cytochrome c reduction. Purified lung reductase was biocatalytically active in supporting benzo(a)pyrene hydroxylation reaction when coupled with lung cytochrome P-450 and lipid.  相似文献   

8.
Kim MJ  Kim Y 《Molecules and cells》1999,9(5):470-475
Reduced form of nicotineamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase was solubilized from a microsomal fraction of Gentiana triflora flowers by 3-[(3 Cholamidopropyl)-dimethylammonio]-1-propane sulfonate detergent and purified to electrophoretic homogeneity. The purification was achieved by adenosine 2', 5'-bisphosphate-Sepharose chromatography, followed by high-performance anion-exchange chromatography. A Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. Western blot analysis showed that the purified protein cross-reacted with polyclonal antibody raised against rabbit anti-Gentiana triflora NADPH-cytochrome P450 reductase antibodies. The temperature and pH optimum for reduction of cytochrome c was 25 degrees C and 7.4 respectively. The Km values for the binding of NADPH and cytochrome c were 9.4 and 3.2 microM, respectively. In this paper, we present some results of the purification and partial characterization of microsomal NADPH-cytochrome P450 reductase from Gentiana triflora flowers.  相似文献   

9.
NADPH-cytochrome P-450 (cytochrome c) reductase (EC 1.6.2.4) was solubilized by detergent from microsomal fraction of wounded Jerusalem-artichoke (Helianthus tuberosus L.) tubers and purified to electrophoretic homogeneity. The purification was achieved by two anion-exchange columns and by affinity chromatography on 2',5'-bisphosphoadenosine-Sepharose 4B. An Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. The purified enzyme exhibited typical flavoprotein redox spectra and contained equimolar quantities of FAD and FMN. The purified enzyme followed Michaelis-Menten kinetics with Km values of 20 microM for NADPH and 6.3 microM for cytochrome c. In contrast, with NADH as substrate this enzyme exhibited biphasic kinetics with Km values ranging from 46 microM to 54 mM. Substrate saturation curves as a function of NADPH at fixed concentration of cytochrome c are compatible with a sequential type of substrate-addition mechanism. The enzyme was able to reconstitute cinnamate 4-hydroxylase activity when associated with partially purified tuber cytochrome P-450 and dilauroyl phosphatidylcholine in the presence of NADPH. Rabbit antibodies directed against plant NADPH-cytochrome c reductase affected only weakly NADH-sustained reduction of cytochrome c, but inhibited strongly NADPH-cytochrome c reductase and NADPH- or NADH-dependent cinnamate hydroxylase activities from Jerusalem-artichoke microsomal fraction.  相似文献   

10.
Cyclooxygenases catalyze the oxygenation of arachidonic acid to prostaglandin endoperoxides. Cyclooxygenase-2- and the xenobiotic-metabolizing cytochrome P450s 1A and 3A are all aberrantly expressed during colorectal carcinogenesis. To probe for a role of P450s in prostaglandin endoperoxide metabolism, we studied the 12-hydroxyheptadecatrienoate (HHT)/malondialdehyde (MDA) synthase activity of human liver microsomes and purified P450s. We found that human liver microsomes have HHT/MDA synthase activity that is concentration-dependent and inhibited by the P450 inhibitors, ketoconazole and clotrimazole with IC(50) values of 1 and 0.4 microM, respectively. This activity does not require P450 reductase. HHT/MDA synthase activity was present in purified P450s but not in heme alone or other heme proteins. The catalytic activities of various purified P450s were determined by measuring rates of MDA production from prostaglandin endoperoxide. At 50 microM substrate, the catalytic activities of purified human P450s varied from 10 +/- 1 to 0.62 +/- 0.02 min(-1), 3A4 > 2E1 > 1A2. Oxabicycloheptane analogs of prostaglandin endoperoxide, U-44069 and U-46619, induced spectral changes in human P450 3A4 with K(s) values of 240 +/- 20 and 130 +/- 10 microM, respectively. These results suggest that co-expression of cyclooxygenase-2 and P450s in developing cancers may contribute to genomic instability due to production of the endogenous mutagen, MDA.  相似文献   

11.
Kim JS  Ahn T  Yim SK  Yun CH 《Biochemistry》2002,41(30):9438-9447
Inhibitory effects of Cu(2+) on the cytochrome P450 (P450)-catalyzed reactions of liver microsomes and reconstituted systems containing purified P450 and NADPH-P450 reductase (NPR) were seen. However, Zn(2+), Mg(2+), Mn(2+), Ca(2+), and Co(2+) had no apparent effects on the activities of microsomal P450s. Cu(2+) inhibited the reactions catalyzed by purified P450s 1A2 and 3A4 with IC(50) values of 5.7 and 8.4 microM, respectively. Cu(2+) also inhibited reduction of cytochrome c by NPR (IC(50) value of 5.8 microM). Copper caused a decrease in semiquinone levels of NPR, although it did not disturb the rate of formation of semiquinone. P450 reactions supported by an oxygen surrogate, tert-butyl hydroperoxide, instead of NPR and NADPH, were inhibited by the presence of Cu(2+). The results indicate that Cu(2+) inhibits the P450-catalyzed reactions by affecting both P450s and NPR. It was also found that the inhibition of catalytic activities of P450s by Cu(2+) involves overall conformational changes of P450s and NPR, investigated by CD and intrinsic fluorescence spectroscopy. These results suggest that the inhibitory effect of Cu(2+) on the P450-catalyzed reactions may come from the inability of an efficient electron transfer from NPR to P450 and also the dysfunctional conformation of NPR and P450.  相似文献   

12.
The kinetic parameters of NADPH-dependent cytochrome P450 LM2 (2B4) reduction and substrate oxidation in the monomeric reconstituted system, consisting of purified NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers, and in phenobarbital-induced rabbit liver microsomes were compared. In the absence of benzphetamine, NADPH-dependent reduction of cytochrome P450 LM2 was monophasic in the monomeric reconstituted system and biphasic in the microsomes. The presence of the substrate in the monomeric reconstituted system caused the appearance of the fast phase. In this system substrate-free cytochrome P450 LM2 was entirely low-spin, and the addition of benzphetamine shifted the spin equilibrium to a high state very weakly. No correlation between high-spin content and the proportion of the fast phase of NADPH-dependent LM2 reduction was found in the system. Vmax values for the oxidation of type I substrates (benzphetamine, dimethylaniline, aminopyrine) in the monomeric reconstituted system were higher or the same as in the microsomes, whereas Km values for the substrates and NADPH were lower in the microsomes. Maximal activity of the monomeric reconstituted system was observed at a 1:1 NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio. Measurements of benzphetamine oxidation as a function of NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio at a constant total protein concentration allowed the Kd of the NADPH-cytochrome P450 reductase/cytochrome P450 LM2 complex to be estimated as 6.4 +/- 0.5 microM. Complex formation between the NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers was not detected by recording the difference binding spectra of the reductase monomers with LM2 monomers or by treatment the mixture of the monomers of the proteins with the crosslinking reagent, water-soluble carbodiimide.  相似文献   

13.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

14.
Ohno S  Nakajima Y  Nakajin S 《Steroids》2005,70(9):645-651
We previously reported that tributyltin chloride (TBT) and triphenyltin chloride (TPT) powerfully suppressed human chorionic gonadotropin- and 8-bromo-cAMP-stimulated testosterone production in pig Leydig cells at concentrations that were not cytotoxic [Nakajima Y, Sato Q, Ohno S, Nakajin S. Organotin compounds suppress testosterone production in Leydig cells from neonatal pig testes. J Health Sci 2003;49:514-9]. This study investigated the effects of these organotin compounds on the activity of enzymes involved in testosterone biosynthesis in pig testis. At relatively low concentrations of TPT, 17beta-hydroxysteroid dehydrogenase (17beta-HSD; IC(50)=2.6microM) and cytochrome P450 17alpha-hydroxylase/C(17-20) lyase (IC(50)=117microM) activities were inhibited, whereas cholesterol side-chain cleavage cytochrome P450 and 3beta-HSD/Delta(4)-Delta(5) isomerase activities were less sensitive. Overall, TPT was more effective than TBT. TPT also inhibited both ferredoxin reductase and P450 reductase activities at concentrations over 30microM; however, TBT had no effect, even at 100microM. The IC(50) values of TPT were estimated to be 25.7 and 22.8microM for ferredoxin reductase and P450 reductase, respectively. The inhibitory effect of TPT (30microM) on microsomal 17beta-HSD activity from pig testis was eliminated by pretreatment with the reducing agents dithiothreitol (1mM) and dithioerythritol (1mM). On the other hand, TPT (0.03microM) or TBT (0.1microM) exposure suppressed the testosterone production from androstenedione in pig Leydig cells indicating that these organotins inhibit 17beta-HSD activity in vivo as well as in vitro, and the IC(50) values of TPT and TBT for 17beta-HSD activity were estimated to be 48 and 114nM, respectively. Based on these results, it appears possible that the effects of TBT and TPT are largely due to direct inhibition of 17beta-HSD activity in vivo.  相似文献   

15.
NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot techniques. Kinetic studies using cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P450c (P450IA1) as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. Our results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.  相似文献   

16.
Buthiobate (S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbon-imidate), a fungicide, inhibited 14 alpha-demethylation of lanosterol catalyzed by a reconstituted enzyme system consisting of cytochrome P-450 (P-450(14)-DM) and NADPH-cytochrome P-450 reductase both purified from Saccharomyces cerevisiae. Concentration of buthiobate necessary for the 50% inhibition was 0.3 microM and this value was markedly lower than those of metyrapone and SKF-525A. Buthiobate bound stoichiometrically to P-450(14)-DM and induced Type II spectral change of the cytochrome. Buthiobate inhibited lanosterol-dependent enzymatic reduction of the cytochrome. These facts indicate that buthiobate binds to P-450(14)-DM with high affinity and acts as a potent inhibitor on the cytochrome.  相似文献   

17.
Cytochrome P450p (IIIA1) has been purified from rat liver microsomes by several investigators, but in all cases the purified protein, in contrast to other P450 enzymes, has not been catalytically active when reconstituted with NADPH-cytochrome P450 reductase and dilauroylphosphatidylcholine. We now report the successful reconstitution of testosterone oxidation by cytochrome P450p, which was purified from liver microsomes from troleandomycin-treated rats. The rate of testosterone oxidation was greatest when purified cytochrome P450p (50 pmol/ml) was reconstituted with a fivefold molar excess of NADPH-cytochrome P450 reductase, an equimolar amount of cytochrome b5, 200 micrograms/ml of a chloroform/methanol extract of microsomal lipid (which could not be substituted with dilauroylphosphatidylcholine), and the nonionic detergent, Emulgen 911 (50 micrograms/ml). Testosterone oxidation by cytochrome P450p was optimal at 200 mM potassium phosphate, pH 7.25. In addition to their final concentration, the order of addition of these components was found to influence the catalytic activity of cytochrome P450p. Under these experimental conditions, purified cytochrome P450p converted testosterone to four major and four minor metabolites at an overall rate of 18 nmol/nmol P450p/min (which is comparable to the rate of testosterone oxidation catalyzed by other purified forms of rat liver cytochrome P450). The four major metabolites were 6 beta-hydroxytestosterone (51%), 2 beta-hydroxytestosterone (18%), 15 beta-hydroxytestosterone (11%) and 6-dehydrotestosterone (10%). The four minor metabolites were 18-hydroxytestosterone (3%), 1 beta-hydroxytestosterone (3%), 16 beta-hydroxytestosterone (2%), and androstenedione (2%). With the exception of 16 beta-hydroxytestosterone and androstenedione, the conversion of testosterone to each of these metabolites was inhibited greater than 85% when liver microsomes from various sources were incubated with rabbit polyclonal antibody against cytochrome P450p. This antibody, which recognized two electrophoretically distinct proteins in liver microsomes from troleandomycin-treated rats, did not inhibit testosterone oxidation by cytochromes P450a, P450b, P450h, or P450m. The catalytic turnover of microsomal cytochrome P450p was estimated from the increase in testosterone oxidation and the apparent increase in cytochrome P450 concentration following treatment of liver microsomes from troleandomycin- or erythromycin-induced rats with potassium ferricyanide (which dissociates the cytochrome P450p-inducer complex). Based on this estimate, the catalytic turnover values for purified, reconstituted cytochrome P450p were 4.2 to 4.6 times greater than the rate catalyzed by microsomal cytochrome P450p.  相似文献   

18.
NADPH-cytochrome P450 reductase, an obligatory component of the cytochrome P450 dependent monooxygenase system, was purified to electrophoretic homogeneity from beef liver microsomes. The purification procedure involved the ion exchange chromatography of the detergent-solubilized microsomes on first and second DEAE-cellulose columns, followed by 2',5'-ADP Sepharose affinity chromatography. Further concentration of the enzyme and removal of Emulgen 913 and 2'-AMP were accomplished on the final hydroxylapatite column. The enzyme was purified 239-fold and the yield was 13.5%. Monomer molecular weight of the enzyme was estimated to be 76000 +/- 3000 (N = 5) by SDS-PAGE. The absolute absorption spectrum of beef reductase showed two peaks at 455 and 378 nm, with a shoulder at 478 nm, characteristics of flavoproteins. The effects of cytochrome c concentration, pH, and ionic strength on enzyme activity were studied. Reduction of cytochrome c with the enzyme followed Michaelis-Menten kinetics, and the apparent K(m) of the purified enzyme was found to be 47.7 microM for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer (pH 7.7). Stability of cytochrome c reductase activity was examined at 25 and 37 degrees C in the presence and absence of 20% glycerol. The presence of glycerol enhanced the stability of cytochrome c reductase activity at both temperatures. Sheep lung microsomal cytochrome P4502B and NADPH-cytochrome P450 reductase were also purified by the already existing methods developed in our laboratory. Both beef liver and sheep lung reductases were found to be effective in supporting benzphetamine and cocaine N-demethylation reactions in the reconstituted systems containing purified sheep lung cytochrome P4502B and synthetic lipid, phosphatidylcholine dilauroyl.  相似文献   

19.
Ueng YF  Chang YL  Oda Y  Park SS  Liao JF  Lin MF  Chen CF 《Life sciences》1999,65(24):2591-2602
In vitro and in vivo effects of naringin on microsomal monooxygenase were studied to evaluate the drug interaction of this flavonoid. In vitro addition of naringin up to 500 microM had no effects on benzo(a)pyrene hydroxylase (AHH) activity of mouse liver microsomes. In contrast, the aglycone naringenin at 300 to 500 microM decreased AHH activity by 50% to 60%. Analysis of Lineweaver-Burk and Dixon plots indicated that naringenin competitively inhibited AHH activity with an estimated Ki of 39 microM. Naringenin at 100 microM also reduced metabolic activation of benzo(a)pyrene to genotoxic products as monitored by umuC gene expression response in Salmonella typhimurium TA1535/pSK1002. In the presence of equimolar naringenin and benzo(a)pyrene, umuC gene expression presented as beta-galactosidase activity was reduced to a level similar to the control value. Administration of a liquid diet containing 10 mg/ml naringin for 7 days caused 38% and 49% decreases of AHH and 7-methoxyresorufin O-demethylase activities, respectively. In contrast, the administration had no effects on cytochrome P450 (P450)-catalyzed oxidations of 7-ethoxyresorufin, 7-ethoxycoumarin, N-nitrosodimethylamine, nifedipine, erythromycin and testosterone. Microsomal P450 and cytochrome b5 contents and NADPH-P450 reductase activity were not affected. Immunoblot analysis using MAb 1-7-1, which immunoreacted with both P450 1A1 and 1A2, revealed that the level of P450 1A2 protein was decreased by 38%. These results demonstrate that naringenin is a potent inhibitor of AHH activity in vitro and naringin reduces the P450 1A2 protein level in vivo. These effects may indicate a chemopreventive role of naringin against protoxicants activated by P450 1A2.  相似文献   

20.
Cytochrome P-450 reductase and cytochrome P-450 fractions have been separated and partially purified from colonic mucosal microsomes of rat pretreated with phenobarbital or beta-naphthoflavone. Colonic cytochrome P-450 reductase has a molecular weight of 76,000. The Km values of colonic cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, ferricyanide, and dichlorophenolindophenol and the electron donor NADPH are 6, 50, 11 and 11 microM, respectively. Immunochemical techniques identified the presence of beta-naphthoflavone Forms 1, 4 and 5 after beta-naphthoflavone treatment but beta-naphthoflavone Forms 1 and 4 and phenobarbital Form 1 after phenobarbital treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号