首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work was based on field screening procedure to detect the population density of Aphis craccivora for two successive seasons (2004–2005) and (2005–2006) to emphasis the relation between the economic injury level (EIL) and yield loss.

Results obtained showed that the equilibrium position (steady point) during the first and second season was 9.06 and 3.32 individuals/five leaflets, respectively, while the injury level was 3.4 and 1.16 individuals/leaflets. When the bean plant was subjected to three successive insecticidal applications during the early growing, season is sufficient to decrease the yield loss significantly (yield capacity 21.43 Ard./fed.) with comparing to untreated plant (14.98 Ard./fed.), while the plants exposure for one treatment was 17.36 Ard./fed. The EIL was 8.6 individual of aphids/plant depending on the market price of bean and control cost during the season.  相似文献   

2.
Observational and microclimate modification experiments were conducted under field conditions to determine the role of the physical environment in effecting large increases in phyllosphere population sizes of Pseudomonas syringae pv. syringae, the causal agent of bacterial brown spot disease of snap bean (Phaseolus vulgaris L.). Comparisons of daily changes in population sizes of P. syringae on three plantings of snap bean cultivar Cascade and one of cultivar Eagle with weather conditions indicated a strong association of rainfalls with periods of 1 to 3 days in duration during which increases in bacterial population sizes were greater than 10-fold and up to 1,000-fold. The effects of rain on populations of P. syringae were explored further by modifying the microclimate of bean plants in the field with polyethylene shelters to shield plants from rain and fine-mesh inert screens to modify the momentum of raindrops. After each of three separate intense rains, the greater-than-10-fold increases in population sizes of P. syringae observed on plants exposed to the rains did not occur on plants in the shelters or under the screens. The screens decreased the velocity and, thus, the momentum of raindrops but not the volume or quality of rainwater that fell on plants under the screens. Thus, the absence of increases in population sizes of P. syringae on plants under the screens suggests that raindrop momentum plays a role in the growth-triggering effect of intense rains on populations of P. syringae on bean plants under field conditions.  相似文献   

3.
The extent to which diel changes in the physical environment affect changes in population size and ice nucleation activity of Pseudomonas syringae on snap bean leaflets was determined under field conditions. To estimate bacterial population size and ice nucleation activity, bean leaflets were harvested at 2-h intervals during each of three 26-h periods. A tube nucleation test was used to assay individual leaflets for ice nuclei. Population sizes of P. syringae were determined by dilution plating of leaflet homogenates. The overall diel changes in P. syringae population sizes differed during each of the 26-h periods. In one 26-h period, there was a continuous increase in the logarithm of P. syringae population size despite intense solar radiation, absence of free moisture on leaf surfaces, and low relative humidity during the day. A mean doubling time of approximately 4.9 h was estimated for the 28-fold increase in P. syringae population size that occurred from 0900 to 0900 h during the 26-h period. However, doubling times of 3.3 and 1.9 h occurred briefly during this period from 1700 to 2300 h and from 0100 to 0700 h, respectively. Thus, growth rates of P. syringae in association with leaves in the field were of the same order of magnitude as optimal rates measured in the laboratory. The frequency with which leaflets bore ice nuclei active at −2.0, −2.2, and −2.5°C varied greatly within each 26-h period. These large diel changes were inversely correlated primarily with the diel changes in air temperature and reflected changes in nucleation frequency rather than changes in population size of P. syringae. Thus, the response of bacterial ice nucleation activity to the physical environment was distinct from the changes in population size of ice nucleation-active P. syringae.  相似文献   

4.
Dry bean ( Phaseolus vulgaris L.) cultivars possess little or no freezing tolerance and are killed at the temperature of ice formation in their tissues. An increase in frost tolerance by 2–3°C would expand dry bean production in the short growing seasons of the Canadian prairies and possibly to higher altitudes in the tropics where episodic frosts occur during the growing season. The objective of this study was to determine the differences in frost resistance of Phaseolus species in both controlled and field environments. Leaflets of dry bean cv. CDC Nighthawk, and wild relatives from the primary gene pool ( P. vulgaris var. mexicanus Freytag and P. vulgaris var. aborigineus (Burkart) Baudet) and the tertiary gene pool ( P. acutifolius var. tenuifolius A. Gray, P. filiformis Bentham, P. angustissimus A. Gray and P. ritensis M.E. Jones) were subjected to subzero temperatures with and without ice nucleation to determine the levels of tolerance and avoidance, respectively. The lethal temperature at which 50% of the leaflets were killed (LT50) was 0.5–1°C lower for species of the tertiary gene pool compared to those from the primary gene pool. Leaflets of species from the tertiary gene pool were also characterized by extensive supercooling compared to leaflets of species from the primary gene pool. Resistance of Phaseolus species to spring and autumn frosts were determined on seedlings transplanted to the field. Phaseolus angustissimus , a species of the tertiary gene pool had the highest seedling survival in response to both autumn and spring frosts, when the minimum air temperatures were −5 and −7°C, respectively. Frost resistance of Phaseolus angustissimus , if successfully introgressed into bean germplasm, may enable the development of frost resistant dry bean cultivars.  相似文献   

5.
The occurrence of "Xanthomonas axonopodis pv. phaseoli var. fuscans" (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 10(5) CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.  相似文献   

6.
Patterns of spread of two aphid borne viruses, the non-persistently transmitted bean yellow mosaic virus (BYMV) and the persistently transmitted subterranean clover red leaf virus (SCRLV), were compared simultaneously in field plots of Vicia faba minor grown in a Mediterranean climate (winter-spring growing season, and dry summer). Spread from a primary source was mapped following the artificial introduction of virus alone, or virus with vector, at the centre of the plots. BYMV spread rapidly from the virus source whether or not vectors were introduced with the virus. By contrast, SCRLV spread from the source only when plants were also artificially infested with the vector Aulacorthum solani. An attempt was made to evaluate the importance of secondary spread of both viruses by assessing the degree of clumping of infected plants that occurred outside the primary sites of virus introduction. BYMV-infected plants were clumped in each treatment irrespective of whether the virus was introduced alone or with vector, as well as in control plots. Clumping of SCRLV occurred only when the vectors were introduced on virus source plants at the beginning of the experiment. Times of spread were determined both by exposing trap plants at 4-weekly intervals throughout the 30 month trial period, and by analysing the rates of spread in experimental plots between June and November in one growing season. Both viruses spread in the spring when vectors were flying, but negligible spread of the viruses was observed in the autumn despite aphid flight activity. Times of flight of the four main aphid vector species were continuously monitored with yellow water traps. A major spring and a minor autumn flight peak were observed for Aphis craccivora, Macrosiphum euphorbiae, Aulacorthum solani and Myzus persicae. Aphid flights occurred predominantly in weeks when the mean temperature was in the range 13–17°C. Rainfall above 7 mm per week appeared to affect flights only when mean weekly temperatures were outside the range 13–17°C.  相似文献   

7.
In Pseudomonas syringae pv. syringae, lemA is required for brown spot lesion formation on snap bean and for production of syringomycin and extracellular proteases (E. M. Hrabak and D. K. Willis, J. Bacteriol. 174: 3011-3022, 1992; E. M. Hrabak and D. K. Willis, Mol. Plant-Microbe Interact. 6:368-375, 1993; D. K. Willis, E. M. Hrabak, J. J. Rich, T. M. Barta, S. E. Lindow, and N. J. Panopoulos, Mol. Plant-Microbe Interact. 3:149-156, 1990). The lemA mutant NPS3136 (lemA1::Tn5) was previously found to be indistinguishable from its pathogenic parent B728a in its ability to grow when infiltrated into bean leaves of plants maintained under controlled environmental conditions (Willis et al., Mol. Plant-Microbe Interact. 3:149-156, 1990). We compared population sizes of NPS3136 and B728aN (a Nal(supr) clone of wild-type B728a) in two field experiments to determine the effect of inactivation of lemA on the fitness of P. syringae pv. syringae. In one experiment, the bacterial strains were spray inoculated onto the foliage of 25-day-old bean plants. In the other, seeds were inoculated at the time of planting. In both experiments, the strains were inoculated individually and coinoculated in a 1:1 ratio. NPS3136 and B728aN achieved similar large population sizes on germinating seeds. However, in association with leaves, population sizes of NPS3136 were diminished relative to those of B728aN in both experiments. Thus, lemA contributed significantly to the fitness of P. syringae pv. syringae in association with bean leaves but not on germinating seeds under field conditions. When NPS3136 was coinoculated with B728aN, the mutant behaved as it did when inoculated alone. However, population sizes of B728aN in the coinoculation treatment were much lower than those when it was inoculated alone. Inactivation of the lemA gene appeared to have rendered the mutant suppressive to B728aN.  相似文献   

8.
We examined the effects of the Pto resistance locus on the population dynamics of Pseudomonas syringae pv. tomato (Pst) strains in field experiments with the nearly isogenic tomato lines Rio Grande (RG, susceptible to Pst races 0 and 1) and Rio Grande-Pto (RG-Pto, resistant to Pst race 0, susceptible to Pst race 1). Pst strain SM78-1Smr (race 0) grew well under field conditions and caused ample bacterial speck disease on susceptible RG plants. In contrast, strain DC3000 failed to establish large populations when inoculated onto field grown RG plants. Mean population sizes of SM78-1Smr were 4–5 orders of magnitude larger on RG than RG-Pto plants indicating that RG-Pto plants were highly effective in attenuating pathogen population development. Most of the sampled leaflets from RG-Pto field plots harboured small numbers of SM78-1Smr. However, population sizes SM78-1Smr as large as 105–106 CFU were found on a few leaflets. Bacteria isolated from these leaflets had phenotypes characteristic of Pst race 1 strains. In growth chamber plant assays, the bacterial strains grew well and caused typical speck lesions on RG-Pto plants. The strains appeared to be race-shift mutants of SM SM78-1Smr. Interestingly, results from DNA hybridization experiments demonstrated that the race-shift mutants were deleted for the avirulence gene, avrPto but not for avrPtoB.  相似文献   

9.
The occurrence of “Xanthomonas axonopodis pv. phaseoli var. fuscans” (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 105 CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.  相似文献   

10.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

11.
Phenological complementarity, species diversity, and ecosystem function   总被引:1,自引:0,他引:1  
Increasing species diversity frequently enhances ecosystem function. Phenological complementarity, the asynchrony of species resource use and growth, may explain how species diversity influences ecosystem function but remains largely untested. We used an early successional plant community containing species with a variety of phenologies to test whether increasing species diversity enhances ecosystem function by increasing phenological complementarity. Over a two-year period, we increased environmental heterogeneity within an abandoned field with variation in disturbance, soil nutrients, water, light availability, and disturbance in 160 permanent plots, and measured percent cover of each plant species three times in each growing season. We did not manipulate species composition directly, and thus diversity and complementarity in each plot were the result of pre-existing conditions and responses of individuals to experimental treatments. Species diversity was measured in two ways, as the total number of species per plot and as the evenness of species abundances. Phenological complementarity was measured as the negative logarithm of the variance ratio. We tested whether the number of plant species per plot, species evenness, and their phenological complementarity in the first year predicted total annual cover in the second year. Total annual cover increased only moderately with number of species and evenness, consistent with studies that randomize species composition among replicate plots. Any effect that species number or evenness had on total annual cover, however, was not due to phenological complementarity. Rather, diversity was unrelated to phenological complementarity. These results indicate that naturally occurring variation in species diversity had little effect on whether phenological complementarity can enhance ecosystem function.  相似文献   

12.
Butterfly diversity and abundance were sampled across eight 1-ha silvicultural treatment plots in southern Cameroon. The plotsincluded a cleared and unplanted farm fallow, cleared and replanted forestplots, and uncleared forest plots. The replanted plots were line-planted withTerminalia ivorensis, but differed in the degree and methodof clearance. A total of 205 species of butterflies were collected over twodifferent seasons. Several sampling methods were used, including hand collecting andbaited canopy traps. Sites with the greatest degree of disturbance andlowest level of tree cover had the lowest number of individuals and species ofbutterflies. The farm fallow had substantially fewer individuals and species ofbutterflies than the other plots. The replanted plots were intermediate betweenthe farm fallow and uncleared forest in terms of abundance, richness andcomposition. With all three forms of multivariate analysis (Morisita similarityindex clustering, detrended correspondence analysis and two-way indicatorspecies analysis) largest differences were found between the farm fallow anduncleared forest plots. The butterfly fauna of the uncleared forest more closelyapproximated that of the manually cleared plot than that of the mechanicallycleared plot. We found that although, in general, young replanted forest plotsare a poor substitute for native forest, they do provide habitat for some forestspecies and that this may increase over time as the plots mature.  相似文献   

13.
In order to assess the responses of circumpolar and semicircumpolar plants growing around their southern distribution margins to artificial warming, we set up 11 open-top chambers (OTCs) on a fell-field (1680 m a.s.l.) in the Taisetsu Mountains, northern Japan. The OTCs increased mean air temperature by 1.3°C through the growing season (June–September) and extended the length of the growing season. We examined phenology and leaf traits of plants in the OTCs and control plots during the first season under artificial warming treatment using two deciduous and three evergreen species. Ledum palustre (evergreen shrub), Vaccinium uliginosum , and Arctous alpinus (deciduous shrubs) showed earlier leaf emergence and/or flowering in the OTCs. Deciduous shrubs had longer individual leaf longevity and an extended foliage period in the OTCs than in the control plots. There were no significant differences in specific leaf area and leaf size for many species between the OTCs and the control plots. Vaccinium vitis-idaea (evergreen shrub), L. palustre, A. alpinus , and Empetrum nigrum (evergreen shrub) had lower leaf nitrogen concentration in the OTCs than in the control plots, whereas it was higher in V. uliginosum . Only E. nigrum showed larger annual shoot growth in the OTCs. No clear differences in response to the warming effect were detected between evergreen and deciduous species in the first season. Circumpolar plants growing in temperate alpine regions may be more affected by season length rather than temperature itself.  相似文献   

14.
Population sizes of two ice nucleation-active strains of Pseudomonas syringae were compared on leaves in controlled environments and in the field to determine the ability of microcosm studies to predict plant habitat preferences in the field. The P. syringae strains investigated were the parental strains of recombinant deletion mutant strains deficient in ice nucleation activity that had been field tested for their ability to control plant frost injury. The population size of the P. syringae strains was measured after inoculation at three field locations on up to 40 of the same plant species that were studied in the growth chamber. There was seldom a significant relationship between the mean population size of a given P. syringae strain incubated under either wet or dry conditions in microcosms and the mean population size which could be recovered from the same species when inoculated in the field. Specifically, on some plant species, the population size recovered from leaves in the field was substantially greater than from that species in a controlled environment, while for other plant species field populations were significantly smaller than those observed under controlled conditions. Population sizes of inoculated P. syringae strains, however, were frequently highly positively correlated with the indigenous bacterial population size on the same plant species in the field, suggesting that the ability of a particular plant species to support introduced bacterial strains is correlated with its ability to support large bacterial populations or that indigenous bacteria enhance the survival of introduced strains. Microcosm studies therefore seem most effective at assessing possible differences between parental and recombinant strains under a given environmental regime but are limited in their ability to predict the specific population sizes or plant habitat preferences of bacteria on leaves under field conditions.  相似文献   

15.
Performance and phenology of alpine herbs along a snow-melting gradient   总被引:1,自引:0,他引:1  
Responses of plants to the length of the growing season were studied in an alpine snow-bed by setting five plots along a snow-melting gradient. Performance and phenology were compared between the plots for five herbaceous species (Peucedanum multivittatum, Primula cuneifolia, Veronica stelleri var.longistyla, Solidago virga-aurea var.leiocarpa andPotentilla matsumurae). Performance characteristics measured were flower height, leaf height, leaf number, flower number and fruit number. In the late exposed plots with short snow-free periods, fruit-set was reduced in many species due to the decrease in flower number and/or the short growing season for fruit development.Veronica stelleri var.longistyla andSolidago virga-aurea var.leiocarpa, which decreased in flower and leaf numbers due to the short snow-free period, were sensitive to the short growing season.Peucedanum multivittatum was vigorous in the late exposed plots, but its slow flowering and fruiting prevented the fruit-set from developing in the last exposed plot.Primula cumeifolia andPotentilla matsumurae, quick flowering species that maintained their flower number throught the snow-melting gradient, were considered the most successful species in late exposed habitats.  相似文献   

16.
A three season study was conducted to determine the effect of added composted yard waste, arbuscular mycorrhizal (AM) fungi, and fertilizer on plant cover, standing crop biomass, species composition, AM fungal infectivity and spore density in coarse taconite iron ore tailing plots seeded with a mixture of native prairie grasses. Plant cover and biomass, percent seeded species, mycorrhizal infectivity and spore density were greatly increased by additions of composted yard waste. After three seasons, total plant cover was also greater in plots with added fertilizer. Third season plant cover was also greater in plots amended with the higher rate (44.8 Mg ha–1) of compost than the moderate rate (22.4 Mg ha-1). Field inoculation with AM fungi also increased plant cover during the second season and infectivity during the first two seasons. Seeded native species, consisting mostly of the cover species Elymus canadensis, dominated plot vegetation during the second and third seasons. Dispersal of AM fungal propagules into nonmycorrhizal plots occurred rapidly and increased infectivity in compost-amended plots during the third season. In plots with less than 10% plant cover, AM fungal infectivity of inoculated plots was greatly reduced after the second season. The high level of plant cover and the trend of increasing proportion of mycorrhizal-dependent warm-season grasses, along with increases in infectivity, forecast the establishment of a sustainable native grass community that will meet reclamation goals.  相似文献   

17.
Greenhouse and field experiments were conducted from 2005 to 2007 to determine the effectiveness of different release times with the predatory mite, Neoseiulus californicus (McGregor), for control of the twospotted spider mite (TSSM), Tetranychus urticae Koch, in strawberries (Fragaria x ananassa Duchesne). The effect of N. californicus releases over time and on development of TSSM populations during a growing season were evaluated. Our hypothesis was that repeated applications of N. californicus, which is currently recommended by biological control companies, might be unnecessary to attain season-long control of TSSM. In greenhouse trials, three treatments consisting of releases of N. californicus at five-day intervals: day 0, day 5, and day 10, and an untreated control were evaluated. The treatment releases significantly reduced TSSM below the control within five days of each release. Neoseiulus californicus significantly reduced TSSM in treatments with high densities (leaflets with ≥ 40 TSSM) below that of treatments with lower densities (leaflets with ≤ 10 TSSM) demonstrating that if released at a predator: prey ratio of 1:10, timing of release does not alter the effectiveness of N. californicus in controlling TSSM. However, we found that if the ratio of predator: prey remains adequate, N. californicus is a more efficient predator at high TSSM densities. Field studies included three treatments consisting of releases of N. californicus at one-month intervals. All treatments significantly reduced TSSM compared with the control plots (no releases). Releases applied early in the season sustained TSSM significantly below those in the control plots for the whole season. Our results indicate that one release of N. californicus is able to sustained control of TSSM in strawberry throughout a growing season if released when TSSM populations are low early in the season in the southeastern United States.  相似文献   

18.
Aims According to traditional theory, superior competitive ability in plants generally requires relatively large plant body size. Yet even within the most crowded vegetation, most resident species are relatively small; species size distributions are right-skewed at virtually every scale. We examine a potential explanation for this paradox: small species coexist with and outnumber large species because they have greater 'reproductive economy', i.e. they are better equipped—and hence more likely—to produce offspring despite severe size suppression from intense competition.Methods Randomly placed plots within old-field vegetation were surveyed across the growing season. Within each plot, the largest (MAX) and smallest (MIN) reproductive individuals of each resident species were collected for above-ground dry mass measurement. We tested three hypotheses: (i) smaller resident species (with smaller MAX size) have generally smaller reproductive threshold sizes; (ii) smaller resident species have greater 'reproductive economy', i.e. a smaller MIN relative to MAX reproductive plant size; and (iii) MIN size predicts plot occupancy (species abundance within the community) better than MAX size.Important findings The results supported the first and third, but not the second hypothesis. However, we could not reject the hypothesis that smaller species have greater reproductive economy, as it was not possible to record data for the largest potential plant size for each species—since even the largest (MAX) plants collected from our sampled plots were subjected to competition from neighbours under these natural field conditions. Importantly, contrary to conventional competition theory, more successful species (in terms of greater plot occupancy) had smaller minimum not larger (or smaller) maximum reproductive sizes. These results suggest that a small reproductive threshold size, commonly associated with relatively small potential body size, is generally more effective in transmitting genes into future generations when selection from neighbourhood crowding/competition is intense—at least within natural old-field vegetation. Accordingly, we propose a simple conceptual model that represents the basis for a fundamental paradigm shift in the predicted selection effects of crowding/competition on plant body size evolution.  相似文献   

19.
鼎湖山南亚热带常绿阔叶林20公顷样地幼苗的分布   总被引:2,自引:0,他引:2  
为了解鼎湖山常绿阔叶林树木幼苗的组成、分布及高度结构,在鼎湖山20 ha动态监测样地(简称DHS)内布置了149个种子雨收集器,并在周围设置了幼苗小样方.2008年31月完成了幼苗调查,共调查到2,632株.采用多元线性回归方法分析了9个树种幼苗多度与6个变鼍之间的关系.这6个变量包括种子雨收集器10 m内DBH≥1 cm同种个体的个体数、胸高断面积之和,以及地形的凹凸度、坡度、坡向和海拔.结果表明影响幼苗多度的因素随树种不同而不同.其中3个树种的幼苗多度只与地形变量有关,4个树种幼陌多度同时受到地形和同种个体多度的影响,1个树种的幼苗多度只与同种个体有关,1个树种幼苗多度与所有变量的关系都不显著.除谷木(Memecylon ligustrifolium)外,10 m范围内同种个体的多度和胸高断面积的偏回归系数一旦显著皆为正值,即幼苗多度随同种个体数或同种胸高断面积增大而增大.本研究为扩散限制和生态位理论提供了间接的证据.  相似文献   

20.
To construct differentially-marked derivatives of our model wild-type strain, Pseudomonas syringae pv. syringae B728a (a causal agent of bacterial brown spot disease in snap bean plants), for field experiments, we selected a site in the gacS-cysM intergenic region for site-directed insertion of antibiotic resistance marker cassettes. In each of three field experiments, population sizes of the site-directed chromosomally marked B728a derivatives in association with snap bean plants were not significantly different from that of the wild-type strain. Inserts of up to 7 kb of DNA in the intergenic region did not measurably affect fitness of B728a in the field. The site is useful for site-directed genomic insertions of single copies of genes of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号