首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a previous study, osteosarcoma cells expressing both 5-lipoxygenase (5-LO) and 5 lipoxygenase-activating protein (FLAP) synthesized leukotrienes upon A23187 stimulation (Dixon, R. A. F., R. E. Diehl, E. Opas, E. Rands, P. J. Vickers, J. F. Evans, J. W. Gillard, and D. K. Miller. 1990. Nature (Lond.). 343:282-284). Osteosarcoma cells expressing 5-LO but not expressing FLAP were unable to synthesize leukotrienes. Thus, it was determined that FLAP was required for the cellular synthesis of leukotrienes. To examine the role of FLAP in A23187-induced translocation of 5-LO to a membrane fraction, we have studied the A23187-stimulated translocation of 5-LO in osteosarcoma cells expressing both 5-LO and FLAP, and in osteosarcoma cells expressing 5-LO only. We demonstrate that in cells expressing both 5-LO and FLAP, 5-LO translocates to membranes in response to A23187 stimulation. This 5-LO translocation is inhibited when cells are stimulated in the presence of MK-886. In osteosarcoma cells expressing 5-LO but not expressing FLAP, 5-LO is able to associate with membranes following A23187 stimulation. In contrast to the cells containing both 5-LO and FLAP, MK-886 is unable to prevent 5-LO membrane association in cells transfected with 5-LO alone. Therefore, we have demonstrated that in this cell system, 5-LO membrane association and activation can be separated into at least two distinct steps: (1) calcium-dependent movement of 5-LO to membranes without product formation, which can occur in the absence of FLAP (membrane association), and (2) activation of 5-LO with product formation, which is FLAP dependent and inhibited by MK-886 (enzyme activation).  相似文献   

2.
3.
A23187-stimulated cytostatic activity of peritoneal macrophages towards P815 tumor cells served as a model for macrophage activation: a macrophage enriched preparation, separated on the basis of cell size in a discontinuous FCS gradient column, expressed cytostatic activity when stimulated by A23187. This was inhibited dose-dependently, by AA-861 but not by nordihydroguaiaretic acid (NDGA). AA-861 inhibited 5-lipoxygenase specifically, NDGA inhibited both 5-lipoxygenase- and cyclooxygenase activity. The ratio cyclooxygenase/lipoxygenase products increased with AA-861 but not with NDGA. These results show that lipoxygenase products are necessary for expression of cytostatic activity of these arachidonic acid metabolite-producing macrophages and that the ratio cyclooxygenase/lipoxygenase metabolites plays an important role in macrophage activation.  相似文献   

4.
Cloned mastocytoma P-815, 2-E-6 cells were used to investigate regulation of 5-lipoxygenase activity. 2-E-6 cells had high 5-lipoxygenase activity with slight 12-lipoxygenase activity. The 5-lipoxygenase activity was increased over 5-fold by treatment of the cells with 1 mM n-butyrate for 18 h. the most effective dose range being 0.1-5.0 mM. Treatment with n-butyrate for 18 h was more effective than treatment for 40 h. Addition of n-butyrate to an untreated cell homogenate had no stimulatory effect. The enhancement of 5-lipoxygenase activity by n-butyrate was accompanied by new synthesis of protein(s). 12-Lipoxygenase activity was not increased so much as 5-lipoxygenase activity by the treatment. This is the first report of stimulation of 5-lipoxygenase activity in cultured cells. The different responses of the two lipoxygenases to n-butyrate treatment strongly suggest that 5-lipoxygenase is a different enzyme from 12-lipoxygenase.  相似文献   

5.
Mice made transgenic (Tg) for a rat anti-mouse CD4 Ab (GK mice) represent a novel CD4-deficient model. They not only lack canonical CD4 cells in the periphery, but also lack the residual aberrant Th cells that are found in CD4-/- mice and MHC class II-/- mice. To analyze the role of CD4 help and costimulation for CTL induction against alloantigens, we have assessed the surface and functional phenotype of CD8 cells in vivo (e.g., clearance of allogeneic P815 cells) and in vitro. In our CD4-deficient GK mice, CTL responses to allogeneic P815 cells were induced, albeit delayed, and were sufficient to eliminate P815 cells. Induction of CTL and elimination of allogeneic P815 cells were inhibited both in the presence and absence of CD4 cells by temporary CD40 ligand blockade. This indicated that direct interaction of CD40/CD40L between APCs and CD8 cells may be an accessory signal in CTL induction (as well as the indirect pathway via APC/CD4 interaction). Furthermore, whereas in CTLA4Ig single Tg mice P815 cells were rejected promptly, in the double Tg GK/CTLA4Ig mice CTL were not induced and allogeneic P815 cells were not rejected. These findings suggest that CD40/CD40L is involved in both CD4-dependent and CD4-independent pathways, and that B7/CD28 is pivotal in the CD4-independent pathway of CTL induction against allogeneic P815 cells.  相似文献   

6.
Leukotrienes (LTs) are produced by several biosynthetic enzymes including cytosolic phospholipase A2 (cPLA2), 5-lipoxygenase (5-LO), and 5-lipoxygenase activating protein (FLAP) in the perinuclear area. In the present study, we showed that pretreatment with methyl-beta-cyclodextrin (MbetaCD), a cholesterol-depleting agent, dramatically reduced the synthesis of LTs in response to A23187 in mast cells. A23187-induced LT synthesis was inhibited by pretreatment with MbetaCD, and this effect was reversed when cholesterol was added. In an approach to identifying the MbetaCD-sensitive protein(s), we observed that FLAP co-localized with flotillin-1, a lipid raft marker protein, in the lipid raft-rich low-density region of sucrose gradients. In addition, electron microscopic analysis revealed that FLAP co-localized with flotillin-1. Together, these results suggest that FLAP is present in cholesterol-rich lipid raft-like domains and that its localization in these domains is critical for LT synthesis.  相似文献   

7.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

8.
Black cumin seed, Nigella sativa L., and its oils have traditionally been used for the treatment of asthma and other inflammatory diseases. Thymoquinone (TQ) has been proposed to be one of the major active components of the drug. Since leukotrienes (LTs) are important mediators in asthma and inflammatory processes, the effects of TQ on leukotriene formation were studied in human blood cells. TQ provoked a significant concentration-dependent inhibition of both LTC4 and LTB4 formation from endogenous substrate in human granulocyte suspensions with IC50 values of 1.8 and 2.3 microM, respectively, at 15 min. Major inhibitory effect was on the 5-lipoxygenase activity (IC50 3 microM) as evidenced by suppressed conversion of exogenous arachidonic acid into 5-hydroxy eicosatetraenoic acid (5HETE) in sonicated polymorphonuclear cell suspensions. In addition, TQ induced a significant inhibition of LTC4 synthase activity, with an IC50 of 10 microM, as judged by suppressed transformation of exogenous LTA4 into LTC4. In contrast, the drug was without any inhibitory effect on LTA4 hydrolase activity. When exogenous LTA4 was added to intact or sonicated platelet suspensions preincubated with TQ, a similar inhibition of LTC4 synthase activity was observed as in human granulocyte suspensions. The unselective protein kinase inhibitor, staurosporine failed to prevent inhibition of LTC4 synthase activity induced by TQ. The findings demonstrate that TQ potently inhibits the formation of leukotrienes in human blood cells. The inhibitory effect was dose- and time-dependent and was exerted on both 5-lipoxygenase and LTC4 synthase activity.  相似文献   

9.
In certain cancers, such as breast, prostate and some lung and skin cancers, the gene for the enzyme catalysing the second and last step in proline synthesis, δ1-pyrroline-5-carboxylate (P5C) reductase, has been found upregulated. This leads to a higher proline content that exacerbates the effects of the so-called proline-P5C cycle, with tumour cells effectively using this method to increase cell survival. If a method of reducing or inhibiting P5C reductase could be discovered, it would provide new means of treating cancer. To address this point, the effect of some phenyl-substituted derivatives of aminomethylene-bisphosphonic acid, previously found to interfere with the catalytic activity of plant and bacterial P5C reductases, was evaluated in vitro on the human isoform 1 (PYCR1), expressed in E. coli and affinity purified. The 3.5-dibromophenyl- and 3.5-dichlorophenyl-derivatives showed a remarkable effectiveness, with IC50 values lower than 1 µM and a mechanism of competitive type against both P5C and NADPH. The actual occurrence in vivo of enzyme inhibition was assessed on myelogenous erythroleukemic K562 and epithelial breast cancer MDA-MB-231 cell lines, whose growth was progressively impaired by concentrations of the dibromo derivative ranging from 10−6 to 10−4 M. Interestingly, growth inhibition was not relieved by the exogenous supply of proline, suggesting that the effect relies on the interference with the proline-P5C cycle, and not on proline starvation.  相似文献   

10.

Background

Cytosine methylation is a frequent epigenetic modification restricting the activity of gene regulatory elements. Whereas DNA methylation patterns are generally inherited during replication, both embryonic and somatic differentiation processes require the removal of cytosine methylation at specific gene loci to activate lineage-restricted elements. However, the exact mechanisms facilitating the erasure of DNA methylation remain unclear in many cases.

Results

We previously established human post-proliferative monocytes as a model to study active DNA demethylation. We now show, for several previously identified genomic sites, that the loss of DNA methylation during the differentiation of primary, post-proliferative human monocytes into dendritic cells is preceded by the local appearance of 5-hydroxymethylcytosine. Monocytes were found to express the methylcytosine dioxygenase Ten-Eleven Translocation (TET) 2, which is frequently mutated in myeloid malignancies. The siRNA-mediated knockdown of this enzyme in primary monocytes prevented active DNA demethylation, suggesting that TET2 is essential for the proper execution of this process in human monocytes.

Conclusions

The work described here provides definite evidence that TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine initiates targeted, active DNA demethylation in a mature postmitotic myeloid cell type.  相似文献   

11.
The effector mechanism of immune spleen cells against syngeneic TMT mammary tumor cells was analyzed in vitro. C3H/He mice were first inoculated with TMT tumor cells, and then the tumors were x-irradiated with 2000 rad 1 wk after the inoculation. Spleen cells from these treated mice inhibited the growth of tumor cells in vitro when assessed by (3H)-TdR incorporation by tumor cells (cytostatic activity). The same spleen cells did not have any cytotoxic activity on TMT tumor cells detected by a 51Cr-release assay. The cytostatic activity was mediated by Lyt-1+23- T cells. The purified T cells alone could not inhibit the growth of tumor cells, but accessory cells were required for the induction of cytostatic T cell activity. The accessory cells were Ia-positive, macrophage-like adherent cells. Furthermore, both T cells and macrophages were also required for the inhibition of tumor growth even after the spleen cells were activated in vitro. These results suggest T cells and macrophages play an important role in the effector mechanism against TMT mammary tumor cells. The mechanism of cytostasis by T cells and macrophages was discussed from the standpoint of the cellular interaction.  相似文献   

12.
Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C((4)) (LTC(4)). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC(4) in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC(4) in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells.  相似文献   

13.
Biosynthesis of heparin, a mast cell-derived glycosaminoglycan with widespread importance in medicine, has not been fully elucidated. In biosynthesis of heparan sulfate (HS), a structurally related polysaccharide, HS glucuronyl C5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) residues. We have generated Hsepi-null mouse mutant mast cells, and we show that the same enzyme catalyzes the generation of IdoA in heparin and that 'heparin' lacking IdoA shows a distorted O-sulfation pattern.  相似文献   

14.
Intravenous and orally administered beta-glucans promote tumor regression and survival by priming granulocyte and macrophage C receptor 3 (CR3, iC3bR and CD11b/CD18) to trigger the cytotoxicity of tumor cells opsonized with iC3b via anti-tumor Abs. Despite evidence for priming of macrophage CR3 by oral beta-glucan in vivo, the current study in C57BL/6 and BALB/c mice showed that granulocytes were the essential killer cells in mAb- and oral beta-glucan-mediated tumor regression, because responses were absent in granulocyte-depleted mice. Among granulocytes, neutrophils were the major effector cells, because tumor regression did not occur when C5a-dependent chemotaxis was blocked with a C5aR antagonist, whereas tumor regression was normal in C3aR(-/-) mice. Neutrophil recruitment by C5a in vivo required amplification via leukotriene B(4), because both C5a-mediated leukocyte recruitment into the peritoneal cavity and tumor regression were suppressed in leukotriene B(4)R-deficient (BLT-1(-/-)) mice.  相似文献   

15.
Treatment with direct electric current (DC) can inhibit tumor growth in several systems. To evaluate the cellular reactions generated by this treatment, we stimulated mouse mastocytoma P815 cells with DC and examined their viability and ultrastructural characteristics, as well as the effect of DC on surface carbohydrate expression. DC treatment affected cell viability and caused marked alterations in vital structures of P815 cells. Alterations varied depending on the duration of stimulation and polarity of electrode. Anodic and cathodic treatments caused decrease in cell viability, although the latter was more effective in generating cell lysis. DC stimulation also induced changes such as membrane damage, alterations in cell shape and chromatin organization, mitochondrial swelling and condensation, cytoplasmic swelling, and matrix rarefaction. Stimulation of P815 cells without contact with electrodes produced no alterations, suggesting that this contact might be essential for the occurrence of the cellular modifications. DC treatment also altered the membrane distribution of anionic sites of P815 cells, as well as the surface carbohydrate exposition, involving a diminished binding of Concanavalin A to the cell surface after cathodic stimulation, and an increased binding of sialic acid- and fucose-specific lectins after anodic treatment. In this work we describe important cellular targets for the action of DC, which may contribute to the understanding of the mechanisms by which DC supresses several kinds of tumors.  相似文献   

16.
17.
A G Fraser  N J McCarthy    G I Evan 《The EMBO journal》1997,16(20):6192-6199
Caspases are involved in the execution of cell death in all multicellular organisms so far studied, including the nematode worm, fruit fly and vertebrates. While Caenorhabditis elegans has only a single identified caspase, CED-3, whose activity is absolutely required for all developmental programmed cell deaths, most mammalian cell types express multiple caspases with varying specificities. The fruit fly Drosophila melanogaster is genetically tractable, less complex than vertebrates and possesses two known caspases, DCP-1 and drICE. The fly may therefore provide a good model system for examining the hierarchy and relative roles of individual caspases in the execution of apoptosis. We have examined the role of drICE in in vitro apoptosis of the D.melanogaster cell line S2. We show that cytoplasmic lysates made from S2 cells undergoing apoptosis induced by either reaper (rpr) expression or cycloheximide treatment contain a caspase activity with DEVD specificity which can cleave p35, lamin DmO, drICE and DCP-1 in vitro, and which can trigger chromatin condensation in isolated nuclei. Using antibodies specific to drICE, we show that immunodepletion of drICE from these lysates is sufficient to remove most measurable in vitro apoptotic activity, and that re-addition of exogenous drICE to such immunodepleted lysates restores apoptotic activity. We conclude that, at least in S2 cells, drICE can be the sole caspase effector of apoptosis.  相似文献   

18.
Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class II expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4+ (but not CD4-) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4+ cells ex vivo. MK886 blocked induction of CCL17. Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalbumin-restimulated CD4+ cells initiate eosinophil recruitment which is strictly dependent on LTB4 production.  相似文献   

19.
Ajuga taiwanensis is widely used for the treatment of hepatitis and hepatoma in Taiwanese folk medicine. However, its bioactive components and mechanism of action are unclear. Herein, ajugalide-B (ATMA), a neoclerodane diterpenoid isolated from Ajuga taiwanensis, is reported to exhibit high anti-proliferative activity against tumor cell lines from various tissues. These results demonstrate that ATMA disrupts the focal adhesion complex by decreasing phosphorylation of paxillin and focal adhesion kinase (FAK). As a result, anoikis, a specific type of apoptosis caused by detachment of cells, is triggered by activation of caspase-8 in A549 cells. Furthermore, ATMA also blocks anchorage-independent growth and cell migration and, therefore, ATMA may serve as a lead compound for the developing of anti-cancer therapeuties with anoikis-inducing properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号