首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maturation of the visual cortex is influenced by visual experience during an early postnatal period. The factors that regulate such a critical period remain unclear. We examined the maturation and plasticity of the visual cortex in transgenic mice in which the postnatal rise of brain-derived neurotrophic factor (BDNF) was accelerated. In these mice, the maturation of GABAergic innervation and inhibition was accelerated. Furthermore, the age-dependent decline of cortical long-term potentiation induced by white matter stimulation, a form of synaptic plasticity sensitive to cortical inhibition, occurred earlier. Finally, transgenic mice showed a precocious development of visual acuity and an earlier termination of the critical period for ocular dominance plasticity. We propose that BDNF promotes the maturation of cortical inhibition during early postnatal life, thereby regulating the critical period for visual cortical plasticity.  相似文献   

2.
The postnatal development of LTP in CA1 area of hippocampus was studied in hippocampal slices from 13-20-day-old intact rats, after unilateral resection of n. medianus on the 13th day, and sham-operated animals. In slices from the intact rats prepared on the 15th-16th-day of postnatal development, the LTP magnitude and duration were significantly larger than in adult animals. Partial deafferentation eliminated this overshoot. However, a less pronounced increase in synaptic plasticity was observed in operated animals on the 17th day. The LTP suppression in the experimental animals may be explained by a decrease in the NMDA receptor activity due to enhanced synaptic activity in the hippocampus. We think that the limited sensory inflow from the partially deafferented forelimb to the hippocampus via the entorhinal cortex may be compensated by activation of other inputs from specific or/and nonspecific pathways. In contrast, the LTP magnitude and duration were significantly increased in slices from the sham-operated rats. This increase may be explained by a decline of synaptic activation of the hippocampus under anesthesia.  相似文献   

3.
Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1) gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has different effects on long-term synaptic plasticity in somatosensory and visual cortical neurons, providing insights on how it may differentially affect the sensory systems. Here we present evidence that long-term potentiation (LTP) is impaired in the developing auditory cortex of the Fmr1 knockout (KO) mice. This impairment of synaptic plasticity is consistent with impaired frequency map plasticity in the Fmr1 KO mouse. Together, these results suggest a potential role of LTP in sensory map plasticity during early sensory development.  相似文献   

4.
Neuromodulatory input, acting on G protein-coupled receptors, is essential for the induction of experience-dependent cortical plasticity. Here we report that G-coupled receptors in layer II/III of visual cortex control the polarity of synaptic plasticity through a pull-push regulation of LTP and LTD. In slices, receptors coupled to Gs promote LTP while suppressing LTD; conversely, receptors coupled to Gq11 promote LTD and suppress LTP. In vivo, the selective stimulation of Gs- or Gq11-coupled receptors brings the cortex into LTP-only or LTD-only states, which allows the potentiation or depression of targeted synapses with visual stimulation. The pull-push regulation of LTP/LTD occurs via direct control of the synaptic plasticity machinery and it is independent of changes in NMDAR activation or neuronal excitability. We propose these simple rules governing the pull-push control of LTP/LTD form a general metaplasticity mechanism that may contribute to neuromodulation of plasticity in other cortical circuits.  相似文献   

5.
We report recent results concerning the action of neurotrophins on the development and plasticity of the visual system of mammals and in particular of their visual cortex. It has been demonstrated that NGF prevents all the effects of monocular deprivation during the critical period. BDNF, that in part also prevents the effects of monocular deprivation, has the interesting additional property of accelerating the development of inhibitory processes. In transgenic mice overexpressing BDNF only in the cortex, the critical period for plasticity initiates a week earlier and presents a precocious closure. Visual acuity also develops much before than in normal animals. These phenomenological observations are paralleled by a precocious increase of inhibitory synapses and inhibitory currents in pyramidal neurons. LTP, tested by stimulation of the white matter, recording in layers 2 and 3 of the visual cortex, presents modifications correlated with the alterations observed in the critical period. Last we report the finding from in vitro and in vivo experiments that MAPkase (Erg 1 and 2) is the molecular chain of events driven both by light and neurotrophins, likely at the bases of the phenomena of plasticity observed during the critical period.  相似文献   

6.
Pham TA  Impey S  Storm DR  Stryker MP 《Neuron》1999,22(1):63-72
Neuronal activity-dependent processes are believed to mediate the formation of synaptic connections during neocortical development, but the underlying intracellular mechanisms are not known. In the visual system, altering the pattern of visually driven neuronal activity by monocular deprivation induces cortical synaptic rearrangement during a postnatal developmental window, the critical period. Here, using transgenic mice carrying a CRE-lacZ reporter, we demonstrate that a calcium- and cAMP-regulated signaling pathway is activated following monocular deprivation. We find that monocular deprivation leads to an induction of CRE-mediated lacZ expression in the visual cortex preceding the onset of physiologic plasticity, and this induction is dramatically downregulated following the end of the critical period. These results suggest that CRE-dependent coordinate regulation of a network of genes may control physiologic plasticity during postnatal neocortical development.  相似文献   

7.
From visual experience to visual function: roles of neurotrophins.   总被引:5,自引:0,他引:5  
Recently, a role for neurotrophins in regulating cortical developmental plasticity has clearly emerged. We present in this review a summary of the early data on the action of nerve growth factor (NGF) in visual cortical development and plasticity in the rat and of other neurotrophins in the visual cortex of other mammals. In addition, to clarify the differences in the results obtained with the various neurotrophins in different animal preparations, we also report new data on the action of NGF, brain-derived neurotrophic factor (BDNF), neurotrophin (NT)3, and NT4 in the same preparation-namely, the visual cortex of the rat. We discuss old and new results in a physiological model in which different neurotrophins play different roles in regulating visual cortical development and plasticity by acting on different neural targets, such as lateral geniculate nucleus (LGN) afferents, intracortical circuitry, and subcortical afferents, and propose a tentative scheme summarizing these actions.  相似文献   

8.
N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC) at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP) at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.  相似文献   

9.
R Zhou  S Wang  X Zhu 《PloS one》2012,7(8):e42443
Prenatal exposure to high-level ethanol (EtOH) has been reported to produce hyperlocomotion in offspring. Previous studies have demonstrated synaptic plasticity in cortical afferent to the dorsolateral (DL) striatum is involved in the pathogensis of hyperlocomotion. Here, prenatal EtOH-exposed rat offspring were used to investigate whether maternal EtOH exposure affected synaptic plasticity in the DL striatum. We found high-frequency stimulation (HFS) induced a weaker long-term potentiation (LTP) in EtOH rats than that in control rats at postnatal day (PD) 15. The same protocol of HFS induced long-term depression (LTD) in control group but still LTP in EtOH group at PD 30 or PD 40. Furthermore, enhancement of basal synaptic transmission accompanied by the decrease of pair-pulse facilitation (PPF) was observed in PD 30 EtOH offspring. The perfusion with D1-type receptors (D1R) antagonist SCH23390 recovered synaptic transmission and blocked the induction of abnormal LTP in PD 30 EtOH offspring. The perfusion with D2-type receptors (D2R) agonist quinpirole reversed EtOH-induced LTP into D1R- and metabotropic glutamate receptor-dependent LTD. The data provide the functional evidence that prenatal ethanol exposure led to the persistent abnormal synaptic plasticity in the DL striatum via disturbing the balance between D1R and D2R.  相似文献   

10.
Molecular and cellular mechanisms for memory consolidation in the cortex are poorly known. To study the relationships between synaptic structure and function in the cortex and consolidation of long-term memory, we have generated transgenic mice in which catalytic activity of PAK, a critical regulator of actin remodeling, is inhibited in the postnatal forebrain. Cortical neurons in these mice displayed fewer dendritic spines and an increased proportion of larger synapses compared to wild-type controls. These alterations in basal synaptic morphology correlated with enhanced mean synaptic strength and impaired bidirectional synaptic modifiability (enhanced LTP and reduced LTD) in the cortex. By contrast, spine morphology and synaptic plasticity were normal in the hippocampus of these mice. Importantly, these mice exhibited specific deficits in the consolidation phase of hippocampus-dependent memory. Thus, our results provide evidence for critical relationships between synaptic morphology and bidirectional modifiability of synaptic strength in the cortex and consolidation of long-term memory.  相似文献   

11.
Cui Y  Jin J  Zhang X  Xu H  Yang L  Du D  Zeng Q  Tsien JZ  Yu H  Cao X 《PloS one》2011,6(5):e20312
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.  相似文献   

12.
Taha S  Hanover JL  Silva AJ  Stryker MP 《Neuron》2002,36(3):483-491
Experience is a powerful sculptor of developing neural connections. In the primary visual cortex (V1), cortical connections are particularly susceptible to the effects of sensory manipulation during a postnatal critical period. At the molecular level, this activity-dependent plasticity requires the transformation of synaptic depolarization into changes in synaptic weight. The molecule alpha calcium-calmodulin kinase type II (alphaCaMKII) is known to play a central role in this transformation. Importantly, alphaCaMKII function is modulated by autophosphorylation, which promotes Ca(2+)-independent kinase activity. Here we show that mice possessing a mutant form of alphaCaMKII that is unable to autophosphorylate show impairments in ocular dominance plasticity. These results confirm the importance of alphaCaMKII in visual cortical plasticity and suggest that synaptic changes induced by monocular deprivation are stored specifically in glutamatergic synapses made onto excitatory neurons.  相似文献   

13.
1. Aim of the present paper is to study the expression of N-Methyl-D-Aspartate receptor (NMDAR) subunits NR2A and NR2B within mouse visual cortex.2. To investigate the influence of neurotrophic factor of NGF family (neurotrophins) on NMDAR expression we used mutant mice carrying a deletion in the gene for brain-derived neurotrophic factor (BDNF), a well-known neurotrophin expressed in visual cortex.3. Western blot and immunohistochemistry were performed at postnatal day P12–14, P21–23, and adulthood showing that both subunits change during postnatal development.4. Absence of BDNF induced a reduction of NR2A level. This effect was specific since the other subunit investigated, NR2B, was not affected in mutant mice.5. We conclude that endogenous BDNF modulates NMDAR expression in the developing visual cortex.  相似文献   

14.
Most algorithms currently used to model synaptic plasticity in self-organizing cortical networks suppose that the change in synaptic efficacy is governed by the same structuring factor, i.e., the temporal correlation of activity between pre- and postsynaptic neurons. Functional predictions generated by such algorithms have been tested electrophysiologically in the visual cortex of anesthetized and paralyzed cats. Supervised learning procedures were applied at the cellular level to change receptive field (RF) properties during the time of recording of an individual functionally identified cell. The protocols were devised as cellular analogs of the plasticity of RF properties, which is normally expressed during a critical period of postnatal development. We summarize here evidence demonstrating that changes in covariance between afferent input and postsynaptic response imposed during extracellular and intracellular conditioning can acutely induce selective long-lasting up- and down-regulations of visual responses. The functional properties that could be modified in 40% of cells submitted to differential pairing protocols include ocular dominance, orientation selectivity and orientation preference, interocular orientation disparity, and the relative dominance of ON and OFF responses. Since changes in RF properties can be induced in the adult as well, our findings also suggest that similar activity-dependent processes may occur during development and during active phases of learning under the supervision of behavioral attention or contextual signals. Such potential for plasticity in primary visual cortical neurons suggests the existence of a hidden connectivity expressing a wider functional competence than the one revealed at the spiking level. In particular, in the spatial domain the sensory synaptic integration field is larger than the classical discharge field. It can be shaped by supervised learning and its subthreshold extent can be unmasked by the pharmacological blockade of intracortical inhibition.  相似文献   

15.
The mammalian visual system exhibits significant experience-induced plasticity in the early postnatal period. While physiological studies have revealed the contribution of the CB1 cannabinoid receptor (CB1) to developmental plasticity in the primary visual cortex (V1), it remains unknown whether the expression and localization of CB1 is regulated during development or by visual experience. To explore a possible role of the endocannabinoid system in visual cortical plasticity, we examined the expression of CB1 in the visual cortex of mice. We found intense CB1 immunoreactivity in layers II/III and VI. CB1 mainly localized at vesicular GABA transporter-positive inhibitory nerve terminals. The amount of CB1 protein increased throughout development, and the specific laminar pattern of CB1 appeared at P20 and remained until adulthood. Dark rearing from birth to P30 decreased the amount of CB1 protein in V1 and altered the synaptic localization of CB1 in the deep layer. Dark rearing until P50, however, did not influence the expression of CB1. Brief monocular deprivation for 2 days upregulated the localization of CB1 at inhibitory nerve terminals in the deep layer. Taken together, the expression and the localization of CB1 are developmentally regulated, and both parameters are influenced by visual experience.  相似文献   

16.
The anterior cingulate cortex (ACC) is critical for brain functions including learning, memory, fear and pain. Long-term synaptic potentiation (LTP), a cellular model for learning and memory, has been reported in the ACC neurons. Unlike LTP in the hippocampus and amygdala, two key structures for memory and fear, little is known about the synaptic mechanism for the expression of LTP in the ACC. Here we use whole-cell patch clamp recordings to demonstrate that cingulate LTP requires the functional recruitment of GluR1 AMPA receptors; and such events are rapid and completed within 5-10 min after LTP induction. Our results demonstrate that the GluR1 subunit is essential for synaptic plasticity in the ACC and may play critical roles under physiological and pathological conditions.  相似文献   

17.
The most dramatic example of experience-dependent cortical plasticity is the shift in ocular dominance that occurs in visual cortex as a consequence of monocular deprivation during early postnatal life. Many of the basic properties of this type of synaptic plasticity have been described in detail. The important challenge that remains is to understand the molecular basis for these properties. By combining theoretical analysis with experiments in vivo and in vitro, some of the elementary molecular mechanisms for visual cortical plasticity have now been uncovered.  相似文献   

18.
Activity-driven delivery of AMPA receptors is proposed to mediate glutamatergic synaptic plasticity, both during development and learning. In hippocampal CA1 principal neurons, such trafficking is primarily mediated by the abundant GluR-A subunit. We now report a study of GluR-B(long), a C-terminal splice variant of the GluR-B subunit. GluR-B(long) synaptic delivery is regulated by two forms of activity. Spontaneous synaptic activity-driven GluR-B(long) transport maintains one-third of the steady-state AMPA receptor-mediated responses, while GluR-B(long) delivery following the induction of LTP is responsible for approximately 50% of the resulting potentiation at the hippocampal CA3 to CA1 synapses at the time of GluR-B(long) peak expression-the second postnatal week. Trafficking of GluR-B(long)-containing receptors thus mediates a GluR-A-independent form of glutamatergic synaptic plasticity in the juvenile hippocampus.  相似文献   

19.
The maturation of cortical circuits is strongly influenced by sensory experience during a restricted critical period. The developmental alteration in the subunit composition of NMDA receptors (NMDARs) has been suggested to be involved in regulating the timing of such plasticity. However, this hypothesis does not explain the evidence that enhancing GABA inhibition triggers a critical period in the visual cortex. Here, to investigate how the NMDAR and GABA functions influence synaptic organization, we examine an spike-timing-dependent plasticity (STDP) model that incorporates the dynamic modulation of LTP, associated with the activity- and subunit-dependent desensitization of NMDARs, as well as the background inhibition by GABA. We show that the competitive interaction between correlated input groups, required for experience-dependent synaptic modifications, may emerge when both the NMDAR subunit expression and GABA inhibition reach a sufficiently mature state. This may suggest that the cooperative action of these two developmental mechanisms can contribute to embedding the spatiotemporal structure of input spikes in synaptic patterns and providing the trigger for experience-dependent cortical plasticity.  相似文献   

20.
Zhang M  Zheng C  Quan M  An L  Yang Z  Zhang T 《Neuro-Signals》2011,19(4):189-197
To examine whether the directionality index of neural information flow (NIF) over specific oscillatory bands is useful in measuring synaptic plasticity, we employed the IM approach to determine the direction of NIF between the cortex and thalamus in normal and stressed animals. The experiment was performed by inducing long-term potentiation (LTP) of the thalamocortical pathway after recording local field potential (LFP). Additionally, comparison of IM measurement between broad- and narrowbands was performed, while a numerical study was also carried out for assessing the number of data points. The results show that the instantaneous phases extracted from narrowband vary monotonically, while these phases are jagged in broadband. Our data show that there is a predominant driving effect (coupling directional index d >0) from the thalamus to the frontal cortex in normal animals; however, the value of d is significantly reduced in the chronic stressed group in both the delta and theta bands. Furthermore, the field LTP data show that chronic stress decreases medial prefrontal cortex synaptic plasticity, which is certainly in line with the LFP findings. Together, these data suggest that using an IM algorithm, the directionality index of NIF in specific oscillatory frequency bands will probably be used as a measure of synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号