首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. The monoamines serotonin (5-HT) and octopamine (OA) enhance the expression of swimming activity in the medicinal leech (Willard, 1981; Belanger and Orchard, 1988). We explored further the effects of these monoamines and related agents on swimming activity observed in isolated leech nerve cords. 2. We confirmed that swimming activity is induced reversibly following exposure of the nerve cord to 5-HT (50 microM); the half-maximal rate of swimming activity develops in about 15 min. Swimming activity returns to control levels about 30 min after drug washout. 3. Swim-induction by 5-HT is blocked by the presence of 10 microM cyproheptadine (a 5-HT antagonist). 4. Although apparently less effective than 5-HT, OA application to nerve cords also induced swimming activity. 5. Depletion of endogenous amines from nerve cords by acute exposure to reserpine (10-150 microM) blocked stimulus-evoked swimming activity within 4 hr. 6. Subsequent application of 5-HT (50 microM) or OA (100 microM) reinstated stimulus-evoked swimming and induced repeated episodes of non-triggered swimming activity. 7. Application of cAMP and cAMP analogs, as well as phosphodiesterase inhibitors (theophylline and IBMX), mimicked the effects of the monoamines, suggesting that 5-HT and OA may activate swimming activity by increasing neuronal cAMP. 8. We obtained episodes of swim-like activity from individual, isolated ganglia exposed to 5-HT or OA. Such episodes were usually brief, with variable cycle period. 9. We conclude that individual nerve cord ganglia contain the complete neuronal circuitry required to generate the rudiments of swimming activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The neuronal circuits that generate swimming movements in the leech were simulated by a chain of coupled harmonic oscillators. Our model incorporates a gradient of rostrocaudally decreasing cycle periods along the oscillator chain, a finite conduction delay for coupling signals, and multiple coupling channels connecting each pair of oscillators. The interactions mediated by these channels are characterized by sinusoidal phase response curves. Investigations of this model were carried out with the aid of a digital computer and the results of a variety of manipulations were compared with data from analogous physiological experiments. The simulations reproduced many aspects of intersegmental coordination in the leech, including the findings that: 1) phase lags between adjacent ganglia are larger near the caudal than the rostral end of the leech nerve cord; 2) intersegmental phase lags increase as the number of ganglia in nervecord preparations is reduced; 3) severing one of the paired lateral connective nerves can reverse the phase lag across the lesion and 4) blocking synaptic transmission in midganglia of the ventral nerve cord reduces phase lags across the block.  相似文献   

3.
Voluntary movements in animals are often episodic, with abrupt onset and termination. Elevated neuronal excitation is required to drive the neuronal circuits underlying such movements; however, the mechanisms that sustain this increased excitation are largely unknown. In the medicinal leech, an identified cascade of excitation has been traced from mechanosensory neurons to the swim oscillator circuit. Although this cascade explains the initiation of excitatory drive (and hence swim initiation), it cannot account for the prolonged excitation (10–100 s) that underlies swim episodes. We present results of physiological and theoretical investigations into the mechanisms that maintain swimming activity in the leech. Although intrasegmental mechanisms can prolong stimulus-evoked excitation for more than one second, maintained excitation and sustained swimming activity requires chains of several ganglia. Experimental and modeling studies suggest that mutually excitatory intersegmental interactions can drive bouts of swimming activity in leeches. Our model neuronal circuits, which incorporated mutually excitatory neurons whose activity was limited by impulse adaptation, also replicated the following major experimental findings: (1) swimming can be initiated and terminated by a single neuron, (2) swim duration decreases with experimental reduction in nerve cord length, and (3) swim duration decreases as the interval between swim episodes is reduced.  相似文献   

4.
1. Repeating bursts of motor neurone impulses have been recorded from the nerves of completely isolated nerve cords of the medicinal leech. The salient features of this burst rhythm are similar to those obtained in the semi-intact preparation during swimming. Hence the basic swimming rhythm is generated by a central oscillator. 2. Quantitative comparisons between the impulse patterns obtained from the isolated nerve cord and those obtained from a semi-intact preparation show that the variation in both dorsal to ventral motor neurone phasing and burst duration with swim cycle period differ in these two preparations. 3. The increase of intersegmental delay with period, which is a prominent feature of swimming behaviour of the intact animal, is not seen in either the semi-intact or isolated cord preparations. 4. In the semi-intact preparation, stretching the body wall or depolarizing an inhibitory motor neurone changes the burst duration of excitatory motor neurones in the same segment. In the isolated nerve cord, these manipulations also change the period of the swim cycle in the entire cord. 5. These comparisons suggest that sensory input stabilizes the centrally generated swimming rhythm, determines the phasing of the bursts of impulses from dorsal and ventral motor neurones, and matches the intersegmental delay to the cycle period so as to maintain a constant body shape at all rates of swimming.  相似文献   

5.
To assess the generality of our previous finding (Gao and Macagno, 1987) that segmental homologues play a role in the establishment of the pattern of axonal projections of the heart accessory HA neurons, we have extended our studies to two other identified leech neurons: the anterior pagoda (AP) neurons and the annulus erector (AE) motor neurons. Bilateral pairs of AP neurons are found in the first through the twentieth segmental ganglia (SG1 through SG20) of the leech ventral nerve cord. All AP neurons initially extend axonal projections to the contralateral periphery as well as longitudinal projections along the contralateral interganglionic connective nerves toward anterior and posterior neighboring ganglia. Although the peripheral projections are maintained by all AP neurons throughout the life of the animal, the longitudinal projections disappear in all but two segments: the AP neurons in SG1 maintain their anterior projections and extend them into the head ganglion, and those in SG20 maintain their posterior projections and extend them into SG21 and the tail ganglion. When single AP neurons are deleted anywhere along the nerve cord before processes begin to atrophy, however, the longitudinal projections are retained by their ipsilateral homologues in adjacent ganglia. The rescued processes appear to take over the projections of the deleted neurons. In cases where two or more AP neurons on the same side of the nerve cord are deleted from adjacent ganglia, a contralateral homologue sometimes extends projections to the periphery ipsilaterally or on both sides. We obtained similar results when we deleted single AE neurons from midbody ganglia. Thus, our experiments with three different identified neurons consistently show that the initial pattern of projections is the same in all ganglia, but that the existence of homologues in adjacent ganglia leads to the pruning of some of the initial projections. A consequence of this homologue-dependent process retraction is that neurons normally lacking neighboring homologues will have patterns of projections different from those neurons that do have such neighbors. Process loss by the HA, AP, and AE neurons may be the result either of competition for targets, inputs, or growth factors or of direct interactions among homologous cells.  相似文献   

6.
Abstract

The leech family Barbronidae is distinguished from the Salifidae and Erpobdellidae by the presence of two accessory copulatory pores, and by the ventral nerve cord with 19 free ganglia and 9 ganglia fused to form the posterior ganglionic mass. Some characteristics of Barbronia assiuti are revised, such as the presence of stylets and the annulation.  相似文献   

7.
Rhythmic animal movements originate in CNS oscillator circuits; however, sensory inputs play an important role in shaping motor output. Our recent studies demonstrated that leeches with severed nerve cords swim with excellent coordination between the two ends, indicating that sensory inputs are sufficient for maintaining intersegmental coordination. In this study, we examined the neuronal substrates that underlie intersegmental coordination via sensory mechanisms. Among the identified sensory neurons in the leech, we found the ventral stretch receptor (VSR) to be the best candidate for our study because of its sensitivity to tension in longitudinal muscle. Our experiments demonstrate that (1) the membrane potential of the VSR is depolarized during swimming and oscillates with an amplitude of 1.5–5.0 mV, (2) rhythmic currents injected into the VSR can entrain ongoing swimming over a large frequency range (0.9–1.8 Hz), and (3) large current pulses injected into the VSR shift the phase of the swimming rhythm. These results suggest that VSRs play an important role in generating and modulating the swim rhythm. We propose that coordinated swimming in leech preparations with severed nerve cords results from mutual entrainment between the two ends of the leech mediated by stretch receptors.  相似文献   

8.
The leech whole-body shortening reflex consists of a rapid contraction of the body elicited by a mechanical stimulus to the anterior of the animal. We used a variety of reduced preparations — semi-intact, body wall, and isolated nerve cord — to begin to elucidate the neural basis of this reflex in the medicinal leech Hirudo medicinalis. The motor pattern of the reflex involved an activation of excitatory motor neurons innervating dorsal and ventral longitudinal muscles (dorsal excitors and ventral excitors respectively), as well as the L cell, a motor neuron innervating both dorsal and ventral longitudinal muscles. The sensory input for the reflex was provided primarily by the T (touch) and P (pressure) types of identified mechanosensory neuron. The S cell network, a set of electrically-coupled interneurons which makes up a fast conducting pathway in the leech nerve cord, was active during shortening and accounted for the shortest-latency excitation of the L cells. Other, parallel, interneuronal pathways contributed to shortening as well. The whole-body shortening reflex was shown to be distinct from the previously described local shortening behavior of the leech in its sensory threshold, motor pattern, and (at least partially) in its interneuronal basis.Abbreviations conn connective - DE dorsal excitor motor neuron - DI dorsal inhibitor motor neuron - DP dorsal posterior nerve - DP:B1 dorsal posterior nerve branch 1 - DP:B2 dorsal posterior nerve branch 2 - MG midbody ganglion - VE ventral excitor motor neuron - VI ventral inhibitor motor neuron  相似文献   

9.
Control of leech swimming activity by the cephalic ganglia   总被引:2,自引:0,他引:2  
We investigated the role played by the cephalic nervous system in the control of swimming activity in the leech, Hirudo medicinalis, by comparing swimming activity in isolated leech nerve cords that included the head ganglia (supra- and subesophageal ganglia) with swimming activity in nerve cords from which these ganglia were removed. We found that the presence of these cephalic ganglia had an inhibitory influence on the reliability with which stimulation of peripheral (DP) nerves and intracellular stimulation of swim-initiating neurons initiated and maintained swimming activity. In addition, swimming activity recorded from both oscillator and motor neurons in preparations that included head ganglia frequently exhibited irregular bursting patterns consisting of missed, weak, or sustained bursts. Removal of the two head ganglia as well as the first segmental ganglion eliminated this irregular activity pattern. We also identified a pair of rhythmically active interneurons, SRN1, in the subesophageal ganglion that, when depolarized, could reset the swimming rhythm. Thus the cephalic ganglia and first segmental ganglion of the leech nerve cord are capable of exerting a tonic inhibitory influence as well as a modulatory effect on swimming activity in the segmental nerve cord.  相似文献   

10.
Modification of leech behavior following foraging for artificial blood   总被引:2,自引:0,他引:2  
In this study we examined whether the foraging for artificial blood affected the behavioral responsiveness of leeches to electrical stimulation of the body wall. After foraging for artificial blood, electrical stimulation of the posterior end of the leech significantly increased the percentage of stimulation trials that elicited locomotory activity—swimming and crawling—compared to the behaviors elicited when leeches did not forage or foraged for normal saline. On the other hand, shortening always dominated the behavioral profile of the leech to anterior stimulation even after foraging for artificial blood. In intact anterior end-isolated nerve cord preparations, we also found that application of artificial blood to the intact anterior end was sufficient to modify motor responsiveness to DP nerve stimulation. Full strength artificial blood had an overall negative effect on the likelihood of DP nerve stimulation initiating swimming and on the average length of elicited swim episodes compared to when pond water surrounded the anterior end. Application of a 10% solution of artificial blood to the anterior end led to an increase in the likelihood of DP nerve stimulation eliciting swimming.  相似文献   

11.
Locomotor systems are often controlled by specialized cephalic neurons and undergo modulation by sensory inputs. In many species, dedicated brain regions initiate and maintain behavior and set the duration and frequency of the locomotor episode. In the leech, removing the entire head brain enhances swimming, but the individual roles of its components, the supra- and subesophageal ganglia, in the control of locomotion are unknown. Here we describe the influence of these two structures and that of the tail brain on rhythmic swimming in isolated nerve cord preparations and in nearly intact leeches suspended in an aqueous, “swim-enhancing” environment. We found that, in isolated preparations, swim episode duration and swim burst frequency are greatly increased when the supraesophageal ganglion is removed, but the subesophageal ganglion is intact. The prolonged swim durations observed with the anterior-most ganglion removed were abolished by removal of the tail ganglion. Experiments on the nearly intact leeches show that, in these preparations, the subesophageal ganglion acts to decrease cycle period but, unexpectedly, also decreases swim duration. These results suggest that the supraesophageal ganglion is the primary structure that constrains leech swimming; however, the control of swim duration in the leech is complex, especially in the intact animal.  相似文献   

12.
In this study, the condensation of the three thoracic and 11 abdominal segmental ganglia to form a prothoracic and central nerve mass during embryogenesis is described. During katatrepsis, many changes occur in the organization of these ganglia; this study suggests that some of these changes are caused by mechanical forces acting on the ventral nerve cord at this time. The ventral nerve cord begins its anterior migration and coalescence ten hours after katatrepsis and is completed 63 hours later. The central ganglion is made up of the meso- and metathoracic ganglia and seven abdominal ganglia. Intrasegmental median cord nuclei are shown to form glial elements in the median sagittal plane of the neuropile and in the longitudinal connectives. Intersegmental median cord neuroblasts migrate into the posterior gangliomeres but, apparently, degenerate soon after katatrepsis. Lateral cord cells bordering on the neuropile form a glial investment that surrounds this fiber tract region. Peripheral lateral cord cells are shown to form the cells of the outer ganglionic sheath, the perineurium.  相似文献   

13.
 Using intracellular lineage tracers to study the main neurogenic lineage (N lineage) of the glossiphoniid leech embryo, we have characterized events leading from continuous columns of segmental founder cells (nf and ns primary blast cells) to discrete, segmentally iterated ganglia. The separation between prospective ganglia was first evident as a fissure between the posterior boundary of nf- and the anterior boundary of ns-derived progeny. We also identified the sublineages of nf-derived cells that contribute parallel stripes of cells to each segment. These stripes of cells project ventrolaterally from the dorsolateral margin of each nascent ganglion to the ventral body wall. The position and orientation of the stripes suggests that they play a role in forming the posterior segmental nerve; they are not coincident with the ganglionic boundary, and they form well after the separation of ganglionic primordia. Previous work has shown that cells in the anterior stripe express the leech engrailed-class gene. Thus, in contrast to the role of cells expressing engrailed in Drosophila, the stripes of N-derived cells expressing an engrailed-class gene in leech do not seem to play a direct role in segmentation or segment polarity. Received: 10 October 1997 / Accepted: 12 December 1997  相似文献   

14.
Intracellular and extracellular recordings were performed in the posterior ventral nerve cord of restrained crawling preparations of the medicinal leech,Hirudo medicinalis. Short-latency neuronal activities in the tail ganglion nerves correlated with different phases of crawling behavior. Eight neurons with characteristic activation patterns during crawling were identified morphologically and physiologically in the tail ganglia of 23 preparations. The axons of four of these neurons projected through posterior tail brain nerves; four ascending interneurons had projections in the connectives or in Faivre's nerve. These interneurons are suitable candidates for carrying information between the front end and the tail end of the animal to coordinate the behavioral components during a crawling step.  相似文献   

15.
1. The anterior segments of Nereis are oriented reflexly by passive unilateral tension of the posterior musculature. 2. The afferent impulses of the homostrophic reflex rise from any part of the worm and are conducted forward by way of the ventral nerve cord. 3. The efferent impulses flow out from the brain and anterior two or three ventral ganglia. 4. The homostrophic reflex may be partially or wholly masked by stereotropism.  相似文献   

16.
The presence and distribution of immunoreactivity to the cyclic AMP response element binding protein (CREB) were determined in the central nervous system (CNS) and in peripheral tissues of the medicinal leech Hirudo. Western blots revealed several CREB-immunoreactive (CREB-IR) bands including one whose molecular weight (43–44 kDa) was similar to mammalian CREB. The 43–44 kDa CREB-like protein was detected in nuclear extracts of the ventral nerve cord and was not observed following preincubation of the primary antiserum with the epitope sequence. CREB-like immunoreactivity was detected in extracts from each of six regions of the leech CNS, and in extracts from leech body wall musculature, crop, intestine, jaw musculature, pharynx, and salivary tissues. Whole mounts of leech ganglia revealed specific CREB-IR in a restricted population of neurons distributed throughout the leech CNS. Apparent homologues to a pair of CREB-IR dorsolateral neurons were observed in most ganglia along the ventral nerve cord. Several CREB-IR neurons exhibited segmental specificity. A number of neurons stained with an antiserum to the cyclic AMP response element modulator (CREM). These neurons showed no overlap in location with CREB-IR neurons, and this staining was not eliminated with a preabsorption control. Possible roles for a CREB-like protein in the leech are discussed. Electronic Publication  相似文献   

17.
Summary A recently discovered member of the neuronal oscillator underlying swimming movements in the medicinal leech,Hirudo medicinalis, is described. This interneuron, named cell 60, exhibits membrane potential oscillations that are phase-locked to the swim oscillations observed in other oscillator neurons (phase angle, approximately 220°) and, when depolarized, acts to shift the phase of the swim oscillations. The soma of cell 60 lies near the posterior-lateral margin on the ventral aspect of most (and possibly all) segmental ganglia. The neurite crosses the midline, then turns anteriorly and projects into the lateral intersegmental connective. Cell 60 is connected to cell 28, a previously described dorsal swim oscillator neuron, via an electrically rectifying junction.Two interactions link cell 60 with cell 208, a swim oscillator neuron found on the ventral aspect of segmental ganglia: a short-latency, fatiguing inhibitory synapse and a powerful electrical interaction. The electrical interaction acts as a diode, in that current can pass from cell 60 to cell 208, but not in the reverse direction. The coupling coefficient in the forward direction is about 0.5 and is independent of the membrane potential difference between cells 60 and 208 provided that the diode connection is forward biased.The rectifying junction acts as a switch which is off during swimming activity because cell 208 oscillations are superimposed on a tonic depolarization of about 10–15 mV. This tonic potential reverse biases the electrical diode connection between cell 60 and cell 208, leaving the inhibitory synapse as the only effective interaction between these cells. The diode switch is on when cell 208 is hyperpolarized. In this circumstance, the dominant connection is electrical; therefore induced potential oscillations in cell 60 induce in-phase oscillations in cell 208.Abbreviations PIR Postinhibitory rebound - NM Neuromime  相似文献   

18.
Summary By use of antisera raised against synthetic pigment-dispersing hormone (PDH) of Uca pugilator and FMRFamide, the distribution of immunoreactive structures in the central nervous system (CNS) of Carcinus maenas and Orconectes limosus was studied by light microscopy. In both species, a total of 10–12 PDH-positive perikarya occur amongst the anterior medial, dorsal lateral and angular somata of the cerebral ganglion (CG). In C. maenas, one PDH-perikaryon was found in each commissural ganglion (COG) and several more in the thoracic ganglion. In O. limosus, only four immunopositive perikarya could be demonstrated in the ventral nerve cord, i.e., two somata in the anterior and two in the posterior region of the suboesophageal ganglion (SOG). PDH-immunoreactive tracts and fiber plexuses were present in all central ganglia of both species, and individual axons were observed in the connectives. FMRFamide-immunoreactivity was studied in O. limosus only. Neurons of different morphological types were found throughout the entire CNS, including numerous perikarya in the anterior medial, anterior olfactory, dorsal lateral and posterior cell groups of the CG. Four perikarya were found in the COG, six large and numerous smaller ones in the SOG, and up to eight cells in each of the thoracic and abdominal ganglia. In each ganglion, the perikarya form fiber plexuses. Axons from neurons belonging to the CG could be traced into the ventral nerve cord; nerve fibers arising from perikarya in the SOG appeared to project to the posterior ganglia. In none of the structures examined colocalization of PDH- and FMRF-amide-immunoreactivity was observed.Dedicated to Prof. K.-E. Wohlfarth-Bottermann on the occasion of his 65th birthday  相似文献   

19.
The neuronal circuits that generate the leech swimming rhythm comprise oscillatory interneurons that provide appropriately phased output to drive swim-related motoneurons. Within ganglia, these interneurons express three phases; between ganglia there exists a phase delay between homologs. Our earlier experiments revealed that stretch receptors embedded in the body wall participate in intersegmental coordination and setting intersegmental phases. To identify the basis for these sensory effects, we mapped interactions between a ventral stretch receptor and swim-related neurons. Connections between this receptor and motoneurons are weak and variable in quiescent preparations, but during fictive swimming stretch receptor activation modulates motoneuron oscillations, hence, these effects are polysynaptic, mediated by interneurons. We identified a strong, nonrectifying, and apparently direct electrical connection between the stretch receptor and oscillator neuron 33. The ventral stretch receptor also interacts with most of the other oscillatory interneurons, including inhibitory inputs to cells 28 and 208, excitatory input to the contralateral cell 115, and mixed input to the ipsilateral cell 115. These direct and indirect interactions can account for previously described effects of body-wall stretch on motoneuron activity. They also could mediate the previously described modification of intersegmental phase relationships by appropriately phased stretch receptor activation.  相似文献   

20.
Summary The neural circuit that controls the hearts in the leech comprises an ensemble of synaptically interconnected cardiac motor neurons (HE cells) and cardiac interneurons (HN cells). Both the HE cells and the HN cells constitute segmentally homologous sets. We have investigated the structure of these neurons by iontophoretic injection of Lucifer Yellow dye.Bilateral pairs of HE cells have been identified in segmental ganglia 3–19 of the nerve cord. Their structure was found to be nearly identical from ganglion to ganglion and from animal to animal.Bilateral pairs of HN cells have been identified in segmental ganglia 1–7 of the nerve cord. Their dendritic structure was found to vary from ganglion to ganglion. These segmental differences among HN cells were observed consistently from animal to animal. Some of the segmental differences in HN cell structure correlate with previously described physiological differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号