首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodegradation of anthracene-9, 10-diethanol by the ligninolytic fungus Phanerochaete chrysosporium, previously though to involve singlet oxygen, is shown to be catalyzed by lignin peroxidases. Veratryl alcohol stimulated the enzymatic degradation of anthracenediethanol, and anthracenediethanol inhibited enzymatic oxidation of veratryl alcohol. Competition for oxidation by lignin peroxidase is suggested as the mechanism of the inhibition of lignin biodegradation by anthracenediethanol and related anthracene derivatives.Abbreviations ADE anthracene-9,10-diethanol - AES anthracene-9,10-bisethanesulfonic acid - DHP dehydrogenative polymerizate - DMF N,N-dimethylformamide - EPX 9,10-endoperoxide of ADE - PMR proton magnetic resonance  相似文献   

2.
The aerobic oxidation of indole-3-acetic acid catalyzed by horseradish peroxidase produces 1268 nm emission characteristic of singlet oxygen. Lactoperoxidase also oxidizes indole-3-acetic acid to produce singlet oxygen, but in contrast to horseradish peroxidase, this enzyme system requires hydrogen peroxide. In both of these systems, the intensity of the 1268 nm emission is small due to quenching of the singlet oxygen by indole-3-acetic acid and by reaction products derived from indole-3-acetic acid. The biomolecular reaction of peroxyl radicals via a Russell mechanism is a plausible mechanism for the singlet oxygen generation in these systems. Under typical conditions of p2H 4.0, 1 microM horseradish peroxidase, 1 mM indole-3-acetic acid, and 240 microM oxygen, the singlet oxygen yield was 15 +/- 1 microM or 13% of the amount predicted by the Russell mechanism.  相似文献   

3.
The singlet oxygen trap diphenylfuran was rapidly oxidized to cis dibenzoylethylene during the decomposition of linoleic acid hydroperoxide catalyzed by ceric ions, methemoglobin or hematin. This conversion was enhanced in a deuterated medium and inhibited by other singlet oxygen quenchers or traps. The chemiluminescence accompanying the decomposition of the linoleic acid hydroperoxide was also markedly enhanced in a deuterated medium and inhibited by other singlet oxygen quenchers or traps. Antioxidants markedly inhibited these reactions. It is concluded that singlet oxygen is formed in substantial quantities during the metal catalyzed decomposition of linoleic acid hydroperoxide.  相似文献   

4.
Hemin can substitute for horseradish peroxidase as a catalyst for the aerobic oxidation of isobutanal to acetone and formate. Previous studies have shown that the chemiphosphorescent emission observed in the enzyme-catalyzed reaction is due to the production of acetone in its triplet state. Although no chemiphosphorescence is observed with the model system (hemin), generation of triplet acetone in this system is indicated by an analysis of data for energy transfer to the 9,10-dibromoanthracene-2-sulfonate ion and for interception of the excited species by the sorbate ion, a known triplet quencher. These data are compared to those obtained with triplet acetone generated by thermal cleavage of tetramethyldioxetane in aqueous solution. The results are in agreement with the hypothesis that the quenching of triplet acetone by oxygen is less efficient in the enzyme catalyzed reaction, pointing to a protective role for the apo-enzyme in that system.  相似文献   

5.
Evidence for singlet oxygen formation has been obtained for the lactoperoxidase, H2O2 and bromide system by monitoring 2,3-diphenylfuran and diphenylisobenzofuran oxidation, O2 evolution, and chemiluminescence. This could provide an explanation for the cytotoxic and microbicidal activity of peroxidases and polymorphonuclear leukocytes. Evidence for singlet oxygen formation included the following. (a) Chemiluminescence accompanying the enzymic reaction was doubled in a deuterated buffer and inhibited by singlet oxygen traps. (b) The singlet oxygen traps, diphenylfuran and diphenylisobenzofuran, were oxidized to their known singlet oxygen oxidation products in the presence of lactoperoxidase, hydrogen peroxide and bromide. (c) The rate of oxidation of diphenylfuran and diphenylisobenzofuran was inhibited when monitored in the presence of known singlet oxygen traps or quenchers. (d) Oxygen evolution from the enzymic reaction was inhibited by singlet oxygen traps but not by singlet oxygen quenchers. (e) The traps or quenchers which were effective inhibitors in the experiments above did not inhibit peroxidase activity, were not competitive peroxidase substrates and did not react with the hypobromite intermediate since they did not inhibit hydrogen peroxide consumption by the enzyme. Using these criteria, various biological molecules were tested for their reactivity with singlet oxygen. Furthermore, by studying their effect on oxygen release by the enzymic reaction, it could be ascertained whether they were acting as singlet oxygen traps or quenchers.  相似文献   

6.
Horseradish peroxidase (HRP) (EC 1.11.1.7) catalyzes the oxidation of reduced glutathione. This reaction is accompanied by light emission, which is attributed to the generation of singlet oxygen. The chemiluminescence is directly related to thiyl radical formation, as deduced from the correlation between the time course of HRP-compound II formation and light emission in the presence of different amounts of H2O2. Superoxide dismutase has an inhibitory effect on the chemiluminescence without affecting the HRP-compound II formation. This indicates the direct involvement of superoxide radicals in the production of photoemissive species. Replacement of HRP by hemin is also accompanied by chemiluminescence.  相似文献   

7.
The kinetics of the singlet oxygen production in the hydrogen peroxide plus hypochlorous acid reaction were studied by measuring the time course of the singlet oxygen emission at 1268 nm. The addition of 1,4-diazabicyclo[2.2.2]octane (DABCO) increased the peak intensity of the chemiluminescence, but decreased its duration. The increased rate of singlet oxygen production likely accounts for the enhancement of singlet oxygen dimol emission reported in 1976 by Deneke and Krinsky (J. Am. Chem. Soc. 98, 3041-3042). This phenomenon was not seen when singlet oxygen was generated with the reaction of hypobromous acid and hydrogen peroxide. Thus, the enhancement of red chemiluminescence by DABCO should not be regarded as a general test for the production of singlet oxygen in complex biochemical systems.  相似文献   

8.
Oxidation by molecular oxygen of vanylpyruvate in dimethylsulfoxide containing potassium t-butoxide results in formation of emissive, electronically excited (singlet) vanillin and of oxalate, that is, the products expected from the cleavage of a dioxetane intermediate. The reaction is a model for the peroxidase and laccase catalyzed processes that occur during lignin degradation by fungi. It is inferred that vanillin formed in the latter processes is generated in an electronically excited state, not necessarily emissive. This view is strengthened by (i) the emission, albeit very weak, observed from the enzyme system, and (ii) the alteration of the enzyme as a result of the reaction, the spectral changes being similar to those induced by uv irradiation of the enzyme alone. Also other peroxidase catalyzed oxidations of aromatic pyruvates should produce the electronically excited aldehyde.  相似文献   

9.
The luminol-dependent chemiluminescence of mouse peritoneal macrophages during phagocytosis of opsonized zymosan was studied by using specific active oxygen scavengers and metabolic inhibitors. Extracellular hydrogen peroxide and superoxide anion were shown to contribute immensely to the induction of the chemiluminescence. The role of the hydroxyl radical was rather insignificant, whereas singlet oxygen was not involved in this process. The interaction between luminol and peroxide was shown to be peroxidase-dependent. An inhibitory analysis revealed that the interaction between luminol, peroxide and superoxide anion obeyed a hybrid enzyme-free radical mechanism.  相似文献   

10.
Singlet oxygen production by soybean lipoxygenase isozymes   总被引:10,自引:0,他引:10  
The oxidation of linoleic acid catalyzed by soybean lipoxygenase isozymes was accompanied by 1268 nm chemiluminescence characteristic of singlet oxygen. The recombination of peroxy radicals as first proposed by Russell (Russell, G.A. (1957) J. Am. Chem. Soc. 79, 3871-3877) is a plausible mechanism for the observed singlet oxygen production. Lipoxygenase-3 was the most active isozyme. Under the optimal aerobic conditions of p2H 7, 100 micrograms/ml lipoxygenase-3, 100 microM linoleic acid, 100 microM 13-hydroperoxylinoleic acid, and air-saturated buffer, the yield of singlet oxygen was 12 +/- 0.4 microM or 12% of the amount predicted by the Russell mechanism. High yields of singlet oxygen required the presence of 13-hydroperoxylinoleic acid. Systems containing lipoxygenase-2 and lipoxygenase-3 produced comparable yields of singlet oxygen without added 13-hydroperoxylinoleic acid, since the lipoxygenase-2 served as an in situ source of hydroperoxide. Lipoxygenase-1 was active only at low oxygen concentrations. Its singlet oxygen-producing capacity was greatly increased by the addition of acetone to the system. Lipoxygenase-2 did not produce detectable quantities of singlet oxygen.  相似文献   

11.
Singlet oxygen production by human eosinophils   总被引:2,自引:0,他引:2  
Human eosinophils, stimulated with phorbol myristate acetate, were found to produce 1268 nm chemiluminescence characteristic of singlet oxygen. Singlet oxygen generation required the presence of bromide ion. A bromide ion concentration of 100 microM, comparable to the total bromine content of whole blood, was sufficient for the eosinophils to generate measurable amounts of singlet oxygen. For the conditions used (10(7) cells/ml and 10 micrograms/ml phorbol myristate acetate), the duration of the singlet oxygen generation was brief, about 5 min, and the total yield of singlet oxygen was modest, 1.0 +/- 0.1 microM. The cells remained viable after the singlet oxygen production ceased. This is the first demonstration of singlet oxygen production from living cells. The singlet oxygen generated by eosinophils likely results from a peroxidase-catalyzed mechanism, since a purified eosinophil peroxidase-hydrogen peroxide-bromide system was also shown to produce singlet oxygen. The unique properties of eosinophil peroxidase are illustrated by the fact that at p2H 7.0 and with 100 microM bromide, eosinophil peroxidase generated 20 +/- 2% of the theoretical yield of singlet oxygen, whereas under identical conditions, myeloperoxidase and lactoperoxidase produced only 1.0 +/- 0.1% and -0.1 +/- 0.1%, respectively.  相似文献   

12.
Esterase from monocytes promotes the hydrolysis of 2-methyl-1-propenylbenzoate (MPB) yielding 2-methyl-1-propenol, which is oxidized by horseradish peroxidase/H2O2 producing triplet acetone. The chemiluminescence of this reaction can be enhanced by the addition of 9,10-dibromoanthracene-2-sulphonate. The non-specific esterase present in monocytes is responsible for MPB hydrolysis, since (a) the chemiluminescence of the reaction was inhibited by fluoride, and (b) cells that do not contain a significant amount of non-specific esterases, e.g. lymphocytes and neutrophils, did not trigger light emission. The analytical application of this reaction is considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Ultraweak chemiluminescence arising from lipoperoxidation has been attributed by several authors to the radiative deactivation of singlet oxygen and triplet carbonyl products. The latter emitters have been suggested to come from annihilation of RO. and ROO. radicals as well as from the thermolysis of dioxetane intermediates formed by (2 + 2) cycloaddition of 1O2 to polyunsaturated fatty acids. This article questions possible dioxetane intermediacy in lipoperoxidation, as the literature clearly states that addition of 1O2 to alpha-hydrogen-containing alyphatic olefins yields only the corresponding allylic hydroperoxides. These compounds may undergo dark thermal or Lewis acid-assisted decomposition to the same product obtained from dioxetane cleavage. Here, reexamining the chemiluminescence properties of dioxygenated tetramethylethylene and linoleic acid and comparing them with those of tetraethyldioxetane, a hindered dioxetane, we corroborate the literature information that only steric hindrance leads to dioxetane formation upon singlet oxygen addition to electron-poor olefins, albeit in very low yields. Proton nuclear magnetic resonance (1H-NMR) analysis, quenching by dioxygen and energy transfer studies to 9,10-dibromoanthracene, as well as gas chromatography (GC) analysis of triphenylphosphine-treated and untreated photo- and chemically dioxygenated olefins support our final conclusion that dioxetane formation during lipoperoxidation can be safely excluded on the basis of the data presently available.  相似文献   

14.
The presence of enzymically generated triplet acetone in red cells and energy transfer to eosin, rose bengal and 9,10-dibromoanthracene-2-sulfonate was indicate by: (1) product distribution; (2) KET τo, similar to the 2-methylpropanal/peroxidase/O2 system; (3) correlation between hemolysis, oxygen uptake and photon emission; (4) membrane protection by energy acceptors, and (5) by comparison of the 2-methylpropanal/peroxidase/O2 system with 2-methylpropanal/red cells/membranes/O2 and 2-methylpropanal/acid extractable protein from red cells membrane/O2 systems, which have a high peroxidase activity.This is the first report of a biological system producing a photohemolysis effect in the dark.  相似文献   

15.
Ascorbate- and hemoglobin-dependent brain chemiluminescence   总被引:1,自引:0,他引:1  
It has been indicated recently that ascorbic acid is responsible for the hemoglobin-mediated oxidative damage to the central nervous system (Sadrzadeh & Eaton, J. Clin. Invest. 82:1510-1515, 1988). In this paper we describe the changes in chemiluminescence accompanying hemoglobin- and ascorbate-dependent oxidative injury to brain tissue. Addition of either hemoglobin (15 microM) or ascorbate (1 or 2 mM) to rat brain homogenates stimulated spontaneous chemiluminescence in a synergistic manner. This increase in chemiluminescence was inhibited by desferrioxamine indicating that free iron was involved in the reactions leading to lipid peroxidation. Preincubation with ascorbate oxidase inhibited both spontaneous and hemoglobin-dependent chemiluminescence, suggesting that ascorbate was required for the reactions leading to lipid peroxidation. Supplementation with aminotriazole (an irreversible inhibitor of the catalase-H2O2 complex) increased chemiluminescence in a time-dependent manner, as catalase reacted with accumulated H2O2, suggesting that ascorbic acid has a dual action being involved in the production of H2O2 and also maintaining Fe in the reduced state to catalyze a Fenton-like reaction. The excited species responsible for the chemiluminescence were partially characterized by adding specific fluorescent energy acceptors: dibromoanthracene (DBA) and diphenylanthracene (DPA). Both DBA and DPA stimulated chemiluminescence several-fold indicating that triplet and singlet species are responsible for the observed chemiluminescence. Excited singlet carbonyls (identified with DPA) may be produced during the collision of two ROO.. Singlet oxygen may also be generated during the same reaction. It decays to the triplet state (emitting chemiluminescence at 634 nm) and reacts with double bonds producing dioxetanes, which may breakdown generating triplet carbonyls (identified with DBA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Luminol oxidation in the Aerosol OT (AOT) reversed micelles in octane catalyzed by horseradish peroxidase (HRP), or its conjugate with Cortisol (HRP-COR), was optimized. The chemiluminescence intensity during luminol oxidation was strongly dependent on the method of preparation of the reaction mixture and the addition of Triton X-45, cyclohexanol and the chemiluminescence “enhancer”, p-iodophenol, into the micellar system. Five procedures for the preparation of the reaction mixture were compared. The maximum chemiluminescence was observed in the micellar system containing all the reaction components excluding a biocatalyst, addition of which into the system started the reaction. Triton X-45, cyclohexanol or p-iodophenol added to the micellar system enhanced significantly the chemiluminescence intensity. The “enhancing” action of p-iodophenol in AOT reversed micelles was 10-fold less than in an aqueous medium.  相似文献   

17.
The effects of pH, luminol myeloperoxidase and hydrogen peroxide concentrations on the intensity of luminol chemiluminescence induced by myeloperoxidase catalysis were investigated. It was found that the intensity of luminescence is proportional to the enzyme concentration (up to 8.10(-8) M) and reaches the saturation level at higher enzyme concentrations. The dependence of chemiluminescence intensity on [H2O2] is bell-shaped: at H2O2 concentrations above 1.10(-4) M the luminescence is inhibited with a maximum at neutral values of pH. Luminol at concentrations above 5.10(-5) M inhibits this process. It was demonstrated that the effects of singlet oxygen, superoxide and hydroxyl radicals on the chemiluminescence reaction are insignificant. Luminol oxidation in the course of the myeloperoxidase reaction is induced by hypochlorite.  相似文献   

18.
The reduction of oxygen by irradiated chloroplasts was studied for elucidation of oxygen action site in the electron transport chain of photosynthesis. Chemiluminescence system, consisted of luminol and peroxidase, was used for registration of oxygen reduction products. In the first case chemiluminescence system was added to supernatant fraction after centrifugation of suspension of irradiated chloroplasts in order to determine H2O2 which was found to be the final product of oxygen photoreduction. In the second case when chloroplasts were illuminated in the presence of chemiluminescence system and oxygen the fact delayed luminescence of luminol was observed. This photoluminescence related also with the oxygen reduction in chloroplasts caused a possible formation of radicals HO2 (or -O2). The formation of this radicals and H2O2 was inhibited by DCMU, heating of chloroplasts at 45 degrees C for 5 min and by washing with EDTA and NH2OH. The rate of HO2 dissappearance was increased by methylviologen. The kinetics of photoluminescence of luminol and afterglow of chlorophyll in chloroplasts was identical in the interval from 20 msec to several seconds. It is suggested that oxygen reaction site is located near the reaction centre of chloroplasts.  相似文献   

19.
A simplified system, consisting of NADPH, Fe3+-ADP, EDTA, liposomes, NADPH-cytochrome c reductase and Tris - HCl buffer (pH 6.8), has been employed in studies of the generation of singlet oxygen in NADPH-dependent microsomal lipid peroxidation. The light emitted by the system involves 1deltag type molecular oxygen identifiable by its characteristic emission spectrum and its behavior with beta-carotene. The generation of another excited species (a compound in the triplet state) could be demonstrated in this system by changes of light intensity and emission spectra which arise from photosensitizer (9,10-dibromoanthracene sulfonate, eosin, Rose-Bengal)-mediated energy transfers. Chemiluminescence in the visible region was markedly quenched by various radical trappers and by an inhibitor of NADPH-cytochrome c reductase, but not by superoxide dismutase. During the early stage of lipid peroxidation, the intensity of chemiluminescence was proportional to the square of the concentration of lipid peroxide. These characteristics suggest that singlet oxygen and a compound in the triplet state (probably a carbonyl compound) are generated by a self-reaction of lipid peroxy radicals.  相似文献   

20.
Singlet oxygen was produced in chemical reaction NaClO+ H2O2. Action of different well-known anti-cataract drugs on this reaction was studied. There is no doubt that the singlet oxygen chemiluminescence decreases in the presence of Catalin and Baineiting. Finnish Catachrom Ophthan, Vita iodurol (France) and Quinax (USA) have no such effect at all which may be a result of the interaction of these remedies with H2O2 and/or with NaClO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号