首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary The purification and crystallization of type C botulinum toxin along with its physical characteristics are described. The shape of Clostridium botulinum type C toxin molecule is globular like a pressed ball with a 7.4 nm diameter and a 4.3 urn thickness. The molecular volume is approximately 185 nl and the molecular weight is 141 000. The toxin molecule is composed of two parts, which are separable under appropriate conditions. These parts have some differences in the electrophoretic properties, amino acid distribution, immunological, and functional characteristics. The toxin molecule can be reconstituted by association of S-S bond between the two chains. The expression of the toxicity requires that the fragments of the polypeptide chain carrying the necessary information be functionally organized for the proper development of the specific tertiary structure for active conformation.  相似文献   

2.
All of the 8 strains that were previously assumed to be nontoxigenic Clostridium botulinum type C were re-examined for their toxigenicity and were demonstrated by trypsinization of the culture filtrates to produce C2 toxin under improved cultural conditions. One per cent glucose added to trypticase peptone medium enhanced C2 toxin production. The larger the spore population, the higher the C2 toxicity and when spore population was smaller than a level of 10(4)/ml, no C2 toxicity was demonstrated. The C2 toxin was produced only during sporulation and not during vegetative growth.  相似文献   

3.
Aktories K  Barth H 《Anaerobe》2004,10(2):101-105
Clostridium botulinum C2 toxin is the prototype of actin-ADP-ribosylating toxins. The toxin consists of the enzyme component C2I and the separated binding/translocation component C2II. C2II is proteolytically activated to form heptamers, which bind the enzyme component. After endocytosis of the receptor-toxin complex, the enzyme component enters the cytosol from an acidic endosomal compartment to modify G-actin at arginine177. Recent data indicate that chaperons are involved in the translocation process of the toxin.  相似文献   

4.
We attempted to characterize ADP-ribose-amino acid bonds formed by various bacterial toxins. The ADP-ribose-arginine bond formed by botulinum C2 toxin in actin was cleaved with a half-life of about 2 h by treatment with hydroxylamine (0.5 M). In contrast, the ADP-ribose-cysteine bond formed by pertussis toxin in transducin and the ADP-ribose-amino acid linkage formed by botulinum ADP-ribosyltransferase C3 in platelet cytosolic proteins were not affected by hydroxylamine. HgCl2 cleaved the ADP-ribose-amino acid bond formed by pertussis toxin in transducin but not those formed by botulinum C2 toxin or botulinum ADP-ribosyltransferase C3 in actin and platelet cytosolic proteins, respectively. NaOH (0.5 M) cleaved the ADP-ribose-amino acid bonds formed by botulinum C2 toxin and pertussis toxin but not the one formed by botulinum ADP-ribosyltransferase C3. The data indicate that the ADP-ribose bond formed by botulinum ADP-ribosyltransferase C3 differs from those formed by the known bacterial ADP-ribosylating toxins.  相似文献   

5.
6.
The natural products of both eremofortin C (EC) and PR toxin are secondary metabolites of Penicillium roqueforti. Because the chemical structures of EC and PR toxin are closely related to each other and differ only by a hydroxyl functional group in EC and an aldehyde functional group in PR toxin at the C-12 position, the chemical transformation of EC into PR toxin was investigated. Oxidation with a chromic anhydride-pyridine complex was found to be the most satisfactory method.  相似文献   

7.
The substrate specificities of the actin-ADP-ribosylating toxins, Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin were studied by using five different preparations of actin isoforms: alpha-skeletal muscle actin, alpha-cardiac muscle actin, gizzard gamma-smooth muscle actin, spleen beta- and gamma-cytoplasmic actin, and aortic smooth muscle actin containing alpha- and gamma-smooth muscle actin isoforms. C. perfringens iota toxin ADP-ribosylated all actin isoforms tested, whereas C. botulinum C2 toxin did not modify alpha-skeletal muscle actin or alpha-cardiac muscle actin. Spleen beta/gamma-cytoplasmic actin and gizzard gamma-smooth muscle actin were substrates of C. botulinum C2 toxin. In the aortic smooth muscle actin preparation, gamma-smooth muscle actin but not alpha-smooth muscle actin was ADP-ribosylated by C. botulinum C2 toxin. The data indicate that, in contrast to C. perfringens iota toxin, C. botulinum C2 toxin ADP-ribosylates only beta/gamma-cytoplasmic and gamma-smooth muscle actin and suggest that the N-terminal region of actin isoforms define the substrate specificity for ADP-ribosylation by C. botulinum C2 toxin.  相似文献   

8.
9.
Hemagglutinating and binding properties of botulinum C2 toxin   总被引:1,自引:0,他引:1  
To characterize the binding substance(s) for botulinum C2 toxin, the hemagglutinating activity of component II of botulinum C2 toxin (C2II) was studied by hemagglutination and hemagglutination inhibition. Human and animal erythrocytes were agglutinated by trypsinized C2II much more strongly than by untreated C2II. Trypsinized C2II agglutinated neuraminidase-treated erythrocytes more strongly than intact, trypsin- and pronase-treated ones. On the other hand, trypsin- and pronase-treated erythrocytes were more weakly hemolyzed by trypsinized C2II than intact and neuraminidase-treated ones, and trypsinized C2II showed both hemagglutinating and hemolytic activities to these erythrocytes. Hemagglutination of trypsin-treated human type B erythrocytes was inhibited by galactose, N-acetylgalactosamine, N-acetylglucosamine, L-fucose and mannose. Thyroglobulin and bovine salivary mucin were much stronger inhibitors. From these findings, the binding substance(s) for botulinum C2 toxin on erythrocytes is(are) suggested to be glycoprotein(s).  相似文献   

10.
Expression of tetanus toxin Fragment C in tobacco chloroplasts   总被引:36,自引:0,他引:36  
Fragment C (TetC) is a non-toxic 47 kDa polypeptide fragment of tetanus toxin that can be used as a subunit vaccine against tetanus. Expression of TetC in Escherichia coli and yeast was dependent on the availability of synthetic genes that were required to improve translation efficiency and stabilize the mRNA. To explore the feasibility of producing TetC in tobacco leaves, we attempted expression of both the bacterial high-AT (72.3% AT) and the synthetic higher-GC genes (52.5% AT) in tobacco chloroplasts. We report here that the bacterial high-AT mRNA is stable in tobacco chloroplasts. Significant TetC accumulation was obtained from both genes, 25 and 10% of total soluble cellular protein, respectively, proving the versatility of plastids for expression of unmodified high-AT and high-GC genes. Mucosal immunization of mice with the plastid- produced TetC induced protective levels of TetC antibodies. Thus, expression of TetC in chloroplasts provides a potential route towards the development of a safe, plant-based tetanus vaccine for nasal and oral applications.  相似文献   

11.
ADP-ribosylation of platelet actin by botulinum C2 toxin   总被引:10,自引:0,他引:10  
Botulinum C2 toxin is a microbial toxin which possesses ADP-ribosyltransferase activity. In human platelet cytosol a 43-kDa protein was ADP-ribosylated by botulinum C2 toxin. Labelling of the 43-kDa protein using [32P]NAD as substrate was reduced by unlabelled NAD and nicotinamide. The label was removed by treatment with snake venom phosphodiesterase. Half-maximal and maximal ADP-ribosylation occurred at 0.1 microgram/ml and 3 micrograms/ml botulinum C2 toxin, respectively. The Km value of the ADP-ribosylation reaction for NAD was about 1 microM. The peptide map of the ADP-ribosylated 43-kDa protein was almost identical with platelet actin. The ADP-ribosylated 43-kDa substrate protein bound to and was eluted from immobilized DNase I in a manner similar to G-actin. Trypsin treatment of platelet cytosol decreased subsequent ADP-ribosylation of the 43-kDa protein without occurrence of smaller labelled polypeptides. Purified platelet actin was also ADP-ribosylated by botulinum C2 toxin with similar characteristics found with actin in platelet cytosol. Phalloidin decreased the ADP-ribosylation of actin in platelet cytosol and of isolated platelet actin. Half-maximal and maximal, about 90%, reduction of actin ADP-ribosylation was observed at 0.4 microM and 10 microM phalloidin, respectively. ADP-ribosylation of purified actin, induced by botulinum C2I toxin, abolished the formation of the typical microfilament network. The data indicate that platelet G-actin but not F-actin is a substrate of botulinum C2 toxin and that this covalent modification largely affects the functional properties of actin.  相似文献   

12.
S Y Li  S C Chang    R D Wei 《Applied microbiology》1985,50(3):729-731
The natural products of both eremofortin C (EC) and PR toxin are secondary metabolites of Penicillium roqueforti. Because the chemical structures of EC and PR toxin are closely related to each other and differ only by a hydroxyl functional group in EC and an aldehyde functional group in PR toxin at the C-12 position, the chemical transformation of EC into PR toxin was investigated. Oxidation with a chromic anhydride-pyridine complex was found to be the most satisfactory method.  相似文献   

13.
Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB(7/8) type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA(63)) and C2II of C2 toxin share a sequence homology of about 35%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA(63) binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA(63)). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.  相似文献   

14.
F. Grolig  I. Just  K. Aktories 《Protoplasma》1996,193(1-4):77-81
Summary The ability of two bacterial toxins to modify a plant actin by covalent ADP-ribosylation was tested in the green algaChara corallina. Using [32P]NAD, bothClostridium botulinum C2 toxin andClostridium perfringens iota toxin labelled a protein of Mr 42 kDa which comigrated with actin and was immunoprecipitated by a monoclonal anti-actin antibody. ADP-ribosylation ofChara actin was more efficient with iota toxin than with C2 toxin. The actin bundles in perfusedChara cells were not affected by toxin-containing media competent for ADP-ribosylation. The data indicate that monomeric plant actin is substrate for ADP-ribosylation by the bacterial toxins.Abbreviations ADP adenosine-diphosphate - EGTA ethyleneglycol-bis-(-aminoethyl)N,N,N,N-tetraacetic acid - NAD nicotinamide dinucleotide - pCA -log [Ca2+] - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

15.
Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin belong to a novel family of actin ADP-ribosylating toxins. ADP-ribosylation of actin inhibits actin polymerization and G-actin-associated ATPase activity. The ADP-form of actin is ADP-ribosylated at a higher rate than actin with bound ATP. ADP-ribosylation of actin is reversible, a reaction, which is accompanied by reconstitution of actin ATPase activity.  相似文献   

16.
The culture medium of certain strains of Clostridium botulinum type C contains two separable ADP-ribosyltransferases. Besides the ADP-ribosylation of actin due to botulinum C2 I toxin, a second microbial enzyme causes the mono-ADP-ribosylation of a eukaryotic protein with a molecular mass of about 20 kDa found in platelets, neuroblastoma X glioma hybrid cells, S49 lymphoma cells, chick embryo fibroblasts and sperm. The eukaryotic substrate is inactivated by heating and trypsin treatment. In contrast, the novel ADP-ribosyltransferase, which can be separated by DEAE-Sephadex chromatography, is largely resistant in the short term to trypsin digestion.  相似文献   

17.
18.
A procedure is described for the purification of hemagglutinin-free Clostridium botulinum type C toxin. The toxin was purified approximately 1,000-fold from the original culture supernatant in an overall yield of 60% to a final specific toxicity of 4.4 x 10(7) minimal lethal doses/mg of protein. The toxin had a molecular weight of 141,000 and consisted of a heavy and a light chain. The molecular weights of the subunits were approximately 98,000 and 53,000. When comparing the molecular size and composition of type C toxin to that of botulinum toxins of different types, some common features may be suggested; i.e., the toxin has a molecular weight between 141,000 to 160,000 and is comprised of a heavy and a light chain linked by disulfide bonds (or bond).  相似文献   

19.
20.
It has been reported that Clostridium botulinum type C 16S progenitor toxin (C16S toxin) first binds to the sialic acid on the cell surface of mucin before invading cells [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochem. Biophys. Res. Commun. 319 (2004) 327-333]. In this study we investigated the binding properties of the C16S toxin to glycoproteins. Although the toxin bound to membrane blotted mucin derived from the bovine submaxillary gland (BSM), which contains a lot of sialyl oligosaccharides, it did not bind to neuraminidase-treated BSM. The binding of the toxin to BSM was inhibited by N-acetylneuraminic acid, N-glycolylneuraminic acid, and sialyl oligosaccharides strongly, but was not inhibited by neutral oligosaccharides. Both sialyl alpha2-3 lactose and sialyl alpha2-6 lactose prevented binding similarly. On the other hand, the toxin also bound well to porcine gastric mucin. In this case, neutral oligosaccharides might play an important role as ligand, since galactose and lactose inhibited binding. These results suggest that the toxin is capable of recognizing a wide variety of oligosaccharide structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号