首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of their large size compared to small molecules and their multifunctionality, nanoparticles (NPs) hold promise as biomedical imaging, diagnostic, and theragnostic agents. However, the key to their success hinges on a detailed understanding of their behavior after administration into the body. NP biodistribution, target binding, and clearance are complex functions of their physicochemical properties in serum, which include hydrodynamic diameter, solubility, stability, shape and flexibility, surface charge, composition, and formulation. Moreover, many materials used to construct NPs have real or potential toxicity or may interfere with other medical tests. In this review, we discuss the design considerations that mediate NP behavior in the body and the fundamental principles that govern clinical translation. By analyzing those nanomaterials that have already received regulatory approval, most of which are actually therapeutic agents, we attempt to predict which types of NPs hold potential as diagnostic agents for biomedical imaging. Finally, using quantum dots as an example, we provide a framework for deciding whether an NP-based agent is the best choice for a particular clinical application.  相似文献   

2.
Mining and hydrometallurgical industries produce large amounts of hazardous metal sulfate solutions as a by-product which can be recycled and exploited to produce valuable and advanced materials. Here, for the first time, extracellular polymeric substances of Bacillus licheniformis were applied as biosurfactants to synthesize quantum dots of cadmium sulfide from pure artificial and impure industrial cadmium sulfate solutions. The bacterial biopolymers stabilized the generated crystalline nuclei as colloidal dots and prevented their further growth or agglomeration. In order to discover the composition and size distribution of the produced particles, characterization was performed by X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results showed that the particles biosynthesized from the pure solution were nano-sized cubic crystals of CdS with the dimensions of 2–10 nm. The same product was also derived from the impure industrial solution. The outcomes of this study indicate the feasibility of cadmium or probably other metal recovery from industrial solutions and wastewaters in the form of valuable metal sulfide nanoparticles.  相似文献   

3.
Quantum dots are semiconductor nanoparticles that are approximately 1-10nm in diameter, similar to small proteins, and their photoluminescence is sensitive to the presence and nature of adsorbates. We have deployed these nanomaterials as luminescent probes of DNA structure. Sequence dependent conformational flexibility of DNA is of great interest due to its implications for drug-DNA and DNA-protein interactions. The counterion atmosphere surrounding DNA plays an important role in its structure, dynamics, and packaging. In this paper, we investigate the effect that various monovalent and divalent cations have on the binding of 4.5 nm CdS quantum dots to oligonucleotides that have sequence-directed intrinsic structure.  相似文献   

4.
Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach.  相似文献   

5.
In previous experiments we have demonstrated that the renal nerves play a significant role in all genetic and (or) induced models of hypertension that we have studied. The current experiments extended this research by investigating the contribution of the renal nerves to hypertension in the Dahl NaCl-sensitive rat. This was investigated by assessing the effect of bilateral phenol renal denervation carried out prior to initiation of a high NaCl (8% NaCl) diet. In two separate studies, renal denervation did not affect systolic blood pressure in either Dahl NaCl-sensitive rats or their normotensive counterparts, Dahl NaCl-resistant rats. Further, denervation did not increase absolute urinary sodium excretion, percent urinary sodium excretion, urinary volume output, or food or water intake; nor did it differentially alter creatinine clearance or body weight. Denervation was verified at the termination of each study by a greater than 80% depletion of renal noradrenaline stores. These results indicate that the renal nerves do not provide a major contribution to hypertension in the Dahl NaCl-sensitive rat.  相似文献   

6.
The present study was undertaken to assess the role of prostaglandin system in the compensatory response to reduced nephron population, respective to renal function and electrolyte excretion. Intact and nephrectomized rats were divided in 4 groups: 1) rats pretreated with indomethacin, 2) rats pretreated with the vehicle of indomethacin, 3) rats pretreated with sulindac, and 4) rats pretreated with the vehicle of sulindac.In normal rats, indomethacin administration resulted in a mild decrease in creatinine clearance and a significant reduction of the urinary Na excretion. In the rats with reduced renal mass treated with indomethacin, the creatinine clearance did not differ from that in the control group. The 24 h urinary sodium excretion and the fractional excretion of sodium, however, were significantly lower in the indomethacin treated animals than in the control rats. No change in the creatinine clearance or in the sodium excretion was observed in all groups pretreated with sulindac.The urinary PGE2 and thromboxane excretion was significantly lower in the indomethacin treated intact rats and the rats with reduced renal mass. Sulindac induced a slight decrease in urinary excretion of PGE2 in intact rats. No significant change in urinary excretion of PGE2 or thromboxane was seen after sulindac in the rats with reduced renal mass.The antinatriuretic effect of indomethacin was dissociated from changes in urine flow in all groups of animals, suggesting that the increase in Na reabsorption tool place in a water impermeable segment of nephron.These results suggest that the compensatory increase in urinary Na excretion per nephron in rats with reduced nephron population at least partly depends on an intact prostaglandin synthesis.  相似文献   

7.
Semiconductor quantum dot particles have a wide range of applications in medicine, bioassays, computing and photovoltaics. Biological synthesis is an attractive approach for mass production of quantum dots as cells have the capacity to passivate the particles with organic ligands. In this work, hairy roots of Solanum lycopersicum (tomato) were used to produce CdS nanoparticles with quantum dot properties. Treatment of the roots with 100 μM Cd during the mid-growth phase of batch culture elicited cellular responses for Cd detoxification without affecting root growth. A combination of freeze-drying and freeze-thawing of the roots was used to extract Cd from the biomass; anion-exchange chromatography was then applied to selectively remove metal–phytochelatin complexes. Size-fractionation using gel filtration allowed the recovery of phytochelatin-capped Cd- and inorganic sulphide-containing nanoparticles displaying the size and size-dependent optical/electronic properties of CdS quantum dots. At 4–10 nm in diameter, these particles fluoresced at wavelengths corresponding to blue-violet on the colour spectrum and exhibited a high level of photostability with prolonged excitation. Whereas 69% of the Cd extracted from the roots was associated with phytochelatin peptides, the maximum yield of CdS nanocrystals with quantum dot properties was 1.4% of the total Cd taken up into the biomass. This work demonstrates a new culture-based approach for the biosynthesis of metallo-organic semiconductor quantum dots using hairy roots.  相似文献   

8.
Water-soluble gold nanoparticles with an average diameter of 5 nm were prepared with carboxylic acid terminated thiol ligands. These ligands contain zero to eight methylene moieties. CdTe nanocrystals with an average diameter of 5 nm were synthesized with aminoethanethiol capping. These nanocrystals displayed characteristic absorption and emission spectra of quantum dots. The amine terminated CdTe nanocrystals and carboxylic-acid-terminated gold nanoparticles were conjugated in aqueous solution at pH 5.0 by electrostatic interaction, and the conjugation was monitored with fluorescence spectroscopy. The CdTe nanocrystals were significantly quenched upon binding with gold nanoparticles. The quenching efficiency was affected by both the concentration of gold nanoparticles in the complex and the length of spacer between the CdTe nanocrystal and Au nanoparticle. The observed quenching was explained using Förster resonance energy transfer (FRET) mechanism, and the Förster distance was estimated to be 3.8 nm between the donor–acceptor pair.  相似文献   

9.
Exciton-plasmon coupling can significantly modify the spectral response of semiconductor quantum dots in a metal nanoparticle-semiconductor complex system. β-In2S3 quantum dots of size ~3 nm and Ag nanospheres of size ~100 nm were synthesized by chemical route and coated over glass substrates. In the strong coupling regime, the plasmons are shown to mediate indirect Coulomb interaction between the quantum dots. In the proximity of Ag plasmons, the excitonic binding energy of the β-In2S3 quantum dots increases by ~500 meV, indicating that the interaction potential between the quantum dots is positive and repulsive in nature. This interaction also leads to strong coupling of the defect levels in the SQD complex. The defect emission wavelength can be enhanced by an order of 102 or shifted from red region (~650 nm) to green (~550 nm) by controlling the plasmon-induced defect level coupling. The experimental observation demonstrates one of the theoretically predicted consequences of exciton-plasmon interaction. This work demonstrates the possibility of harnessing the potential of the two complimentary systems (semiconductor quantum dots and metal nanoparticles) to achieve controllable emission and absorption properties for fabrication of nano plasmonic devices.  相似文献   

10.
We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH2). The CHPNH2-QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging.  相似文献   

11.
Silicon (Si), as silicic acid, is suggested to be the natural antidote to aluminium (Al) toxicity, and was recently shown to promote the urinary excretion of Al from body stores. The metabolism of Si in man, however, remains poorly investigated. Here we report on the pharmacokinetics and metabolism of Si in healthy volunteers following ingestion of orthosilicic acid (27-55 mg/l Si) in water. We also investigated whether orthosilicic acid promotes the urinary excretion of endogenous Al. Minimum, median uptake of Si from the ingested dose was 50.3% (range: 21.9-74.7%, n = 8) based on urinary analysis following dosing. Significant correlations were observed between creatinine clearance and Si levels in serum or urine (r = 0.95 and 0.99, respectively). Renal clearance of Si was 82-96 ml/min suggesting high renal filterability. These results suggest that orthosilicic acid is readily absorbed from the gastrointestinal tract of man and then readily excreted in urine. There was no significant increase in Al excretion, over 32 h, following ingestion of the orthosilicic acid dose (P = 0.5; n = 5).  相似文献   

12.
Successful drug delivery by functionalized nanocarriers largely depends on their efficient intracellular transport which has not yet been fully understood. We developed a new tracking technique by encapsulating quantum dots into the core of wheat germ agglutinin-conjugated nanoparticles (WGA-NP) to track cellular transport of functionalized nanocarriers. The resulting nanoparticles showed no changes in particle size, zeta potential or biobinding activity, and the loaded probe presented excellent photostability and tracking ability. Taking advantage of these properties, cellular transport profiles of WGA-NP in Caco-2 cells was demonstrated. The cellular uptake begins with binding of WGA to its receptor at the cell surface. The subsequent endocytosis happened in a cytoskeleton-dependent manner and by means of clathrin and caveolae-mediated mechanisms. After endosome creating, transport occurs to both trans-Golgi and lysosome. Our study provides new evidences for quantum dots as a cellular tracking probe of nanocarriers and helps understand intracellular transport profile of lectin-functionalized nanoparticles.  相似文献   

13.
We report tuning of photoluminescence enhancement and quenching from closed packed monolayers of cadmium selenide quantum dots doped with gold nanoparticles. Plasmon-mediated control of the emission intensity from the monolayers is achieved by varying the size and packing density of the quantum dots as well as the doping concentration of gold nanoparticles. We observe a unique packing density dependent crossover from enhancement to quenching and vice versa for fixed size of quantum dots and doping concentration of gold nanoparticles. We suggest that this behavior is indicative of a crossover from single particle to collective emission from quantum dots mediated by gold nanoparticles.  相似文献   

14.
Conventional quantum dots have great potential in cancer-related imaging and diagnostic applications; however, these applications are limited by concerns about the inherent toxicity of their core materials (e.g., cadmium, lead). Virtually all imaging applications require conjugation of the imaging agent to a biologically active molecule to achieve selective uptake or binding. Here, we report a study of biocompatible silicon quantum dots covalently attached to biomolecules including lysine, folate, antimesothelin, and transferrin. The particles possess desirable physical properties, surface chemistry, and optical properties. Folate- and antimesothelin-conjugated silicon quantum dots show selective uptake into Panc-1 cells. This study contributes to the preclinical evaluation of silicon quantum dots and further demonstrates their potential as an imaging agent for cancer applications.  相似文献   

15.
Capillary electrophoresis coupled with laser-induced fluorescence was used for the characterization of quantum dots and their conjugates to biological molecules. The CE-LIF was laboratory-built and capable of injection (hydrodynamic and electrokinetic) from sample volumes as low as 4 μL via the use of a modified micro-fluidic chip platform. Commercially available quantum dots were bioconjugated to proteins and immunoglobulins through the use of established techniques (non-selective and selective). Non-selective techniques involved the use of EDCHCl/sulfo-NHS for the conjugation of BSA and myoglobin to carboxylic acid-functionalized quantum dots. Selective techniques involved 1) the use of heterobifunctional crosslinker, sulfo-SMCC, for the conjugation of partially reduced IgG to amine-functionalized quantum dots, and 2) the conjugation of periodate-oxidized IgGs to hydrazide-functionalized quantum dots. The migration times of these conjugates were determined in comparison to their non-conjugated QD relatives based upon their charge-to-size ratio values. The performance of capillary electrophoresis in characterizing immunoconjugates of quantum dot-labeled IgGs was also evaluated. Together, both QDs and CE-LIF can be applied as a sensitive technique for the detection of biological molecules. This work will contribute to the advancements in applying nanotechnology for molecular diagnosis in medical field.  相似文献   

16.
The aim of the present study was to assess the effect of cicletanine on renal cGMP production. To do so we measured mean arterial pressure (MAP), creatinine clearance (CC), and urinary excretion of electrolytes and cGMP under basal conditions and after 6 h of cicletanine administration (10 and 15 mg/kg body weight by oral gavage) in conscious Wistar rats. Also, the in vitro effect of cicletanine was assessed by incubating renal slices and isolated rat glomeruli with two concentrations of cicletanine (0.1 and 1 mM) for different times (1, 2, 5, and 30 min) in the presence of 3-isobutyl-1-methylxanthine. Oral administration of cicletanine induced an increase in urinary flow (V) and the urinary excretion of electrolytes and cGMP, with no changes in CC. In addition, a significant decrease in MAP was observed, but only with the lower dose. Incubation with cicletanine did not induce significant changes in cGMP production in glomeruli or renal slices. These results show that cicletanine, administered in vivo at diuretic and antihypertensive doses, induces an increase in urinary cGMP excretion.  相似文献   

17.
The renal prostaglandins are involved in the regulation of sodium balance. In the present study exchangeable body sodium (NaE) and the urinary excretion of the stable metabolite of prostacyclin, 6-keto-prostaglandin F1 alpha (6-k-PGF1 alpha) were determined simultaneously in 10 hospitalized healthy individuals. NaE was 1461 +/- 107 mmol/m2 body surface area, or 98.5 +/- 6.9% when expressed as percent of the normal value assessed on the basis of measurements in 54 control subjects. The excretion of 6-k-PGF1 alpha amounted to 68.3 +/- 39.2 ng/4 hr. Statistical evaluation revealed significant correlation between NaE and PGF1 alpha excretion (r = 0.642; p less than 0.05) and between the serum Na concentration and the urinary excretion of 6-k-PGF1 alpha (r = 0.865; p less than 0.001). The obtained results indicate that urinary 6-k-PGF1 alpha excretion, hence the renal synthesis of prostacyclin, are regulated, among other factors, by body sodium stores. The increased production of prostacyclin with expanding sodium space might be regarded as a compensatory response contributing to the renal elimination of excess sodium from the body. The signal to this response could be the serum Na concentration.  相似文献   

18.
本文报告持续恒定地分别输注0.9%和0.8%NaCl 溶液于家兔静脉,以造成不同渗透性盐水负荷,观察到电针一侧后肢相当于“三阴交”和“照海”穴,均使低渗与等渗性盐水负荷兔的尿流量与尿Na~ 排出量显著增加,渗透物质清除率也明显升高,但对尿Na~ 浓度则无明显影响。切除两侧颈迷走神经或摘除两侧肾神经,均可使电针效应消失。结果表明:电针的这种效应可能由于躯体传入冲动增强了刺激心房容积感受器-肾反射中枢有关,这一设想还需要进一步研究。  相似文献   

19.
Nitric oxide (NO) may play important roles in rheumatoid arthritis (RA). RA is an inflammatory disease involving joints and other systems including salivary glands. To assess NO production in RA patients, we compared levels of serum, urine, and salivary nitrite and nitrate (NOx) in patients with RA and normal subjects, and we examined the relationships of these measures to disease activity. Serum, urine, and NOx levels as well as renal creatinine, NOx clearance and fractional excretion rates were compared in 25 RA patients and 20 age- and gender-matched healthy controls. Subjects were hospitalized for 3 days and placed on a NOxrestricted diet. NOx was assayed using nitrate reductase and the Griess reagent. RA activity was assessed using standard clinical and laboratory measures. While consuming a restricted diet for 3 days to eliminate the effects of oral intake of NOx, 24 hour urinary NOx excretion decreased in both RA patients and healthy controls. Urine NOx levels at all time points were not significantly different between RA patients and normal subjects. Serum NOx levels also decreased during the 3 days of NOx restriction, but RA patients had higher serum NOx levels at all time points compared with the control group. Likewise, serum NOx/creatinine ratios were higher in RA patients than in controls. Although basal salivary flow rate and tear flow were lower in RA patients, salivary NOx levels did not differ between normal and RA subjects. While renal creatinine clearance was not different between the two groups, we found that RA patients had lower renal NOx clearance and lower renal NOx fractional excretion. After correction of p values for multiple comparisons, there were no significant relationships for the RA group between measures of disease activity and the urinary NOx, serum NOx, or urinary NOx clearance. Despite interest in the use of NO as a marker of disease activity, alterations in renal NOx clearance and fractional excretion in RA make it difficult to assess in vivo NO production even with strict dietary restriction of NOx intake.  相似文献   

20.
Abstract

Nanoparticles present a new collection of contrast agents for the field of in vivo molecular imaging. This review focuses on promising molecular imaging probes for optical and magnetic resonance imaging based on four representative nanomaterial(s) platforms: quantum dots, upconversion phosphors, superparamagnetic iron oxides, and dendrimer-based agents. Quantum dots are extremely efficient fluorescent nanoparticles with size-tunable emission properties, enabling high sensitivity and greater depth penetration. Their heavy metal composition and long retention in the body, however, pose concerns for clinical translational applications. Upconversion phosphors generate excellent signal-to-background contrast because they emit light with higher energy than the excitation photons and autofluorescence signals. For MRI, iron oxide particles also generate excellent signal and have been used in liver imaging and for cell tracking studies. As they are metabolized through endogenous iron salvage pathways, they have already been introduced as clinical contrast agents. Lastly, dendrimers, a ‘soft’ nanoparticle, can be used as a structural basis for the attachment of small molecule imaging agents and/or targeting groups. This array of nanoparticles should offer insights into the uses and potentials of nanoparticles for the molecular imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号