首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed vaccinia virus recombinants expressing dengue virus proteins from cloned DNA for use in experimental immunoprophylaxis. A recombinant virus containing a 4.0-kilobase DNA sequence that codes for three structural proteins, capsid (C), premembrane (pre-M), and envelope (E), and for nonstructural proteins NS1 and NS2a produced authentic pre-M, E, and NS1 in infected CV-1 cells. Mice immunized with this recombinant were protected against an intracerebral injection of 100 50% lethal doses of dengue 4 virus. A recombinant containing only genes C, pre-M, and E also induced solid resistance to challenge. Deletion of the putative C-terminal hydrophobic anchor of the E glycoprotein did not result in secretion of E from recombinant-virus-infected cells. Recombinants expressing only the E protein preceded by its own predicted N-terminal hydrophobic signal or by the signal of influenza A virus hemagglutinin or by the N-terminal 71 amino acids of the G glycoprotein of respiratory syncytial virus produced glycosylated E protein products of expected molecular sizes. These vaccinia virus recombinants also protected mice.  相似文献   

2.
3.
During the export of flavivirus particles through the secretory pathway, a viral envelope glycoprotein, prM, is cleaved by the proprotein convertase furin; this cleavage is required for the subsequent rearrangement of receptor-binding E glycoprotein and for virus infectivity. Similar to many furin substrates, prM in vector-borne flaviviruses contains basic residues at positions P1, P2, and P4 proximal to the cleavage site; in addition, a number of charged residues are found at position P3 and between positions P5 and P13 that are conserved for each flavivirus antigenic complex. The influence of additional charged residues on pr-M cleavage and virus replication was investigated by replacing the 13-amino-acid, cleavage-proximal region of a dengue virus (strain 16681) with those of tick-borne encephalitis virus (TBEV), yellow fever virus (YFV), and Japanese encephalitis virus (JEV) and by comparing the resultant chimeric viruses generated from RNA-transfected mosquito cells. Among the three chimeric viruses, cleavage of prM was enhanced to a larger extent in JEVpr/16681 than in YFVpr/16681 but was slightly reduced in TBEVpr/16681. Unexpectedly, JEVpr/16681 exhibited decreased focus size, reduced peak titer, and depressed replication in C6/36, PS, and Vero cell lines. The reduction of JEVpr/16681 multiplication correlated with delayed export of infectious virions out of infected cells but not with changes in specific infectivity. Binding of JEVpr/16681 to immobilized heparin and the heparin-inhibitable infection of cells were not altered. Thus, diverse pr-M junction-proximal sequences of flaviviruses differentially influence pr-M cleavage when tested in a dengue virus prM background. More importantly, greatly enhanced prM cleavability adversely affects dengue virus export while exerting a minimal effect on infectivity. Because extensive changes of charged residues at the pr-M junction, as in JEVpr/16681, were not observed among a large number of dengue virus isolates, these results provide a possible mechanism by which the sequence conservation of the pr-M junction of dengue virus is maintained in nature.  相似文献   

4.
Prior infection with a nef-deleted simian immunodeficiency virus (SIV) protects macaques not only against a homologous pathogenic SIV challenge but also against challenge with a chimeric SIV expressing a human immunodeficiency virus type 1 env gene (SHIV). Since this SHIV is itself nonpathogenic, we sought to explore the use of a nonpathogenic SHIV as a live, attenuated AIDS virus vaccine. Four cynomolgus monkeys infected for greater than 600 days with a chimeric virus composed of SIVmac 239 expressing the human immunodeficiency virus type 1 HXBc2 env, tat, and rev genes were challenged intravenously with 100 animal infectious doses of the J5 clone of SIVmac 32H, an isolate derived by in vivo passage of SIVmac 251. Three of the four monkeys became infected with SIVmac. This observation underlines the difficulty, even with a live virus vaccine, in protecting against an AIDS virus infection.  相似文献   

5.
The anthracycline, doxorubicin is a potent cancer chemotherapeutic agent whose therapeutic usefulness is limited by both a dose- and time-dependent cardiomyopathy. We tested the ability of an immunomodulatory alkaloid swainsonine (8alphabeta-indolizidine-1alpha,2alpha,8beta-triol) to protect C57BL/6 mice against lethality within 70 days following a single bolus intraperitoneal injection of LD50/14 doxorubicin. Also, we sought the potential mechanisms responsible for this protection. This extended 70-day study in mice, which may be considered equivalent to a period of 4 to 5 years in humans, has clinical implication for delayed cardiotoxic sequela of therapy with high dose doxorubicin. Mice were pretreated with swainsonine or its diluent buffer, phosphate buffered saline for ten consecutive days prior to a single bolus intraperitoneal injection of a LD50/14 doxorubicin. We have previously defined this swainsonine pretreatment regimen as one of the two optimal conditions for swainsonine rescue of mice from death induced by LD50/14 doxorubicin. The survival and well being of groups of mice pretreated with swainsonine and phosphate buffered saline prior to LD50/14 doxorubicin, sham-treated and untreated were monitored daily for up to 70 days. The bone marrow cellularity of the mice were quantified, and in vitro progenitor cell assays were used to determine the effects of these treatment regimens on bone marrow competence following doxorubicin treatment. The effects of these treatment regimens on heart morphology and hematologic toxicities were also determined. This swainsonine pretreatment regimen significantly abrogated doxorubicin-induced lethality and prolonged survival of mice by facilitating restoration of bone marrow cellularity, accelerating restoration of blood hematocrit and total leukocyte levels, enhancing the proliferation and differentiation of bone marrow pluripotent stem cells along the different paths to progenitor lineages, and preserving the heart morphology. This study strongly suggests a potential role for swainsonine with doxorubicin in cancer chemotherapy.  相似文献   

6.
Aerosol immunization is a safe way to induce complete protection against pleuropneumonia in pigs caused by the lung pathogenic bacterium Actinobacillus pleuropneumoniae. In order to determine the local immune responses of vaccinees in concomitant with protection, lung lining fluid before and 3 weeks after immunization from pigs immunized three times with aerosols of either genetically inactivated ghosts which represent whole cell envelope preparations, or irradiated bacteria were examined following an homologous aerosol challenge. Specific antibody isotypes in the bronchoalveolar lavage were assayed by whole cell ELISAs. Total and relative numbers of cells including lymphocyte subsets were determined. In both vaccinated groups a net influx of plasma cells and lymphocytes, as well as a significant increase of specific IgG occurred. Concurrently, the CD4+/CD8+ ratio was found to increase after aerosol immunization. The lymphocyte subsets of IgG+ and IgA+ cells were found significantly higher in the group immunized with irradiated bacteria when compared to pigs immunized with bacterial ghosts. The latter group showed a significant increase of IgA, IgM, and a net influx of lymphoid blasts and granulocytes in the bronchoalveolar lining fluid. Although differences between the local immune responses of both immunized groups occurred, a significant increase of specific IgG and a net influx of plasma cells and lymphocytes were found to be associated with complete protection against a homologous aerosol challenge infection.  相似文献   

7.
8.
Nontraumatic vaginal inoculation of rhesus macaques with a simian/human immunodeficiency virus (SIV/HIV) chimera containing the envelope gene from HIV-1 89.6 (SHIV 89.6) results in systemic infection (Y. Lu, B. Brosio, M. Lafaile, J. Li, R. G. Collman, J. Sodroski, and C. J. Miller, J. Virol. 70:3045-3050, 1996). A total of five rhesus macaques have each been infected by exposure to at least three intravaginal inoculations of SHIV 89.6. The SHIV 89.6 infection is characterized by a transient viremia that evokes humoral and cellular immune responses to HIV and SIV antigens, but disease does not develop in animals infected with SHIV 89.6. To determine if a previous infection with SHIV 89.6 by vaginal inoculation could protect animals from vaginal challenge with pathogenic SIV, all five animals were intravaginally inoculated twice with pathogenic SIV-mac239. After challenge, all of the SHIV-immunized animals had low or undetectable viral RNA levels in plasma compared to control animals. Three of the five of the SHIV-immunized animals remained virus isolation negative for more than 8 months, while two became virus isolation positive. The presence of SIV Gag-specific cytotoxic T lymphocytes in peripheral blood mononuclear cells and SIV-specific antibodies in cervicovaginal secretions at the time of challenge was associated with resistance to pathogenic SIV infection after vaginal challenge. These results suggest that protection from sexual transmission of HIV may be possible by effectively stimulating both humoral and cellular antiviral immunity in the systemic and genital mucosal immune compartments.  相似文献   

9.
Immunization of mice with DNA encoding the influenza virus hemagglutinin (HA) affords complete protection against lethal influenza virus infection and the means to investigate the mechanisms of B-cell responsiveness to virus challenge. Using a single-cell enzyme-linked immunospot assay, we sought to determine the localization of HA-specific antibody-forming cells (AFCs) during the development of humoral immunity in mice given HA DNA vaccine by gene gun. At 33 days postvaccination, populations of AFCs were maintained in the spleen and bone marrow. In response to lethal challenge with influenza virus, the AFCs became localized at the site of antigenic challenge, i.e., within the draining lymph nodes of the lung compartment. Immunoglobulin G (IgG)- and IgA-producing AFCs were detected in lymph nodes of the upper and lower respiratory tracts, underscoring their importance in clearing virus from the lungs. Response to challenge required competent CD4+ T cells, without which no AFCs were generated, even those producing IgM. By contrast, in mice vaccinated with an HA-containing subunit vaccine, fewer AFCs were generated in response to challenge, and these animals were less capable of resisting infection. Our findings demonstrate the comparable localization of AFCs in response to challenge in mice vaccinated with either HA DNA or live virus. Moreover, the former strategy generates both IgG- and IgA-producing plasma cells.  相似文献   

10.
11.
The protective immunity conferred by a set of recombinant vaccinia viruses containing the entire coding sequence of dengue virus type 4 nonstructural glycoprotein NS1 plus various flanking sequences was evaluated by using a mouse encephalitis model. Mice immunized with recombinant vNS1-NS2a, which expresses authentic NS1, were solidly protected against intracerebral dengue virus challenge. However, mice immunized with recombinants vNS1-15%NS2a and vRSVG/NS1-15%NS2a, which express aberrant forms of NS1, were only partially protected (63 to 67% survival rate). Serologic analysis showed that mice immunized with vNS1-NS2a developed high titers of antibodies to NS1 as measured by radioimmunoprecipitation, enzyme-linked immunosorbent assay, and complement-mediated cytolytic assays. In addition, a pool of sera from these animals was protective in a passive transfer experiment. Lower titers of NS1-specific antibodies were detected in sera of animals immunized with vNS1-15%NS2a or vRSVG/NS1-15%NS2a by all three assays. These data support the view that protection against dengue virus infection in mice may be mediated at least in part by NS1-specific antibodies through a mechanism of complement-mediated lysis of infected cells. Additionally, immunization with two recombinant viruses expressing authentic NS1 of dengue virus type 2 conferred partial protection (30-50%) against dengue virus type 2 challenge.  相似文献   

12.

Background

In Southeast Asia, dengue viruses often co-circulate with other flaviviruses such as Japanese encephalitis virus, and due to the presence of shared antigenic epitopes it is often difficult to use serological methods to distinguish between previous infections by these flaviviruses.

Results

Convalescent sera from 69 individuals who were known to have had dengue or Japanese encephalitis virus infection were tested by western blotting against dengue, Japanese encephalitis and West Nile virus antigens. We determined that individuals who had been infected with dengue viruses had IgG responses against the premembrane protein of dengue viruses but not Japanese encephalitis, whereas individuals who had been infected with Japanese encephalitis had IgG specific for the premembrane protein of Japanese encephalitis virus but not the dengue viruses. None reacted with the premembrane protein of West Nile virus. Using the Pearson Chi Square test, it was determined that the difference between the two groups was highly significant with a p value of <0.001.

Conclusion

The use of flavivirus premembrane protein in seroepidemiological studies will be useful in determining what flaviviruses have circulated in a community.  相似文献   

13.
There are no specific approved drugs or vaccines for the treatment or prevention of infectious dengue virus and there are very few compounds known that inhibit the replication of this virus. This letter describes the concise synthesis of two uracil-based multifunctional compounds. One of these compounds (1) has strong activity against dengue virus. It also exhibits low activity against a few other RNA viruses, but is highly active against yellow fever virus, a related flavivirus. It is likely that the mechanism of action of the antiviral activity of this compound is through its inhibition of the enzyme, inosine monophosphate dehydrogenase (IMPDH). Molecular modeling studies reveal that the compound can have specific hydrogen bonding interactions with a number of amino acids in the active site of IMPDH, a stacking interaction with the bound natural substrate, IMP, and the ability to interfere with the binding of NAD+ with IMPDH, prior to the hydration step.  相似文献   

14.
15.
Previously, we constructed a chimeric influenza virus that expresses the highly conserved amino acid sequence ELDKWA of gp41 of human immunodeficiency virus type 1 (HIV-1). Antisera elicited in mice by infection with this chimeric virus showed neutralizing activity against distantly related HIV-1 isolates (T. Muster, R. Guinea, A. Trkola, M. Purtscher, A. Klima, F. Steindl, P. Palese, and H. Katinger, J. Virol. 68:4031-4034, 1994). In the present study, we demonstrated that intranasal immunizations with this chimeric virus are also able to induce a humoral immune response at the mucosal level. The immunized mice had ELDKWA-specific immunoglobulins A in respiratory, intestinal, and vaginal secretions. Sustained levels of these secretory immunoglobulins A were detectable for more than 1 year after immunization. The results show that influenza virus can be used to efficiently induce secretory antibodies against antigens from foreign pathogens. Since long-lasting mucosal immunity in the genital and intestinal tracts might be essential for protective immunity against HIV-1, influenza virus appears to be a promising vector for HIV-1-derived immunogens.  相似文献   

16.
Temperature-sensitive (ts) mutants of vesicular stomatitis virus belonging to complementation groups I, II and IV inhibited the replication of wild-type vesicular stomatitis virus when mixed infections were carried out in BHK21 cells at 32, 37, and 39.5 C. The group IV mutant (ts G 41) was most effective in this regard; wild-type virus yields were inhibited almost 1,000-fold in mixed infections with this mutant at 32 C. In the case of group I and II mutants, inhibition of wild-type virus replication at 37 and 39.5 C was accompanied by an enhancement (up to 15,000-fold) of the yields of the coinfecting ts mutant. The yields of the group IV mutant (ts G 41) were not enhanced by mixed infections with wild-type virus at any temperature, although this mutant inhibited wild-type virus replication at all temperatures. The dominance of the replication of ts mutants at 37 C provides a rationale for the selection and maintenance of ts virus in persistently infected cells.  相似文献   

17.
Chimeric dengue serotype 2/West Nile (D2/WN) viruses expressing prM-E of WN NY99 virus in the genetic background of wild-type D2 16681 virus and two candidate D2 PDK-53 vaccine variants (PDK53-E and PDK53-V) were engineered. The viability of the D2/WN viruses required incorporation of the WN virus-specific signal sequence for prM. Introduction of two mutations at M-58 and E-191 in the chimeric cDNA clones further improved the viability of the chimeras constructed in all three D2 carriers. Two D2/WN chimeras (D2/WN-E2 and -V2) engineered in the backbone of the PDK53-E and -V viruses retained all of the PDK-53 vaccine characteristic phenotypic markers of attenuation and were immunogenic in mice and protected mice from a high-dose 10(7) PFU challenge with wild-type WN NY99 virus. This report further supports application of the genetic background of the D2 PDK-53 virus as a carrier for development of live-attenuated, chimeric flavivirus vaccines in general and the development of a chimeric D2/WN vaccine virus against WN disease in particular.  相似文献   

18.
Tobacco plant lines transformed with the coat protein (CP) gene of the tobacco veinal necrosis strain of potato virus Y (PVYN), and previously shown to be protected against mechanical inoculation with the virus, have now been tested for specificity and protection against virus infection mediated by viruliferous aphids. To determine the specificity of virus protection, two transgenic tobacco lines, A30 and A80, were challenged with several isolates of distinct PVY strains (PVYN, PVYO and PVYC) by mechanical inoculation. Clear levels of protection against the PVYO-isolates tested were maintained in the transgenic plants, although these levels were slightly lower than the protection against the homologous PVYN strain from which the CP gene was derived. Interestingly, no protection against mechanical virus inoculation with the Gladblaadje isolate of PVYC could be observed. To assess the levels of protection against aphid-mediated virus infection, two transgenic plant lines, A30 and D25, showing respective levels of protection of 95 and 80% against mechanical virus inoculation, were challenged using PVYN viruliferousMyzus persicae. Virus inoculation using six aphids per plant, resulted in similar levels of protection in both transgenic lines as found previously for mechanical inoculation. Protection was maintained in both lines, even when as many as 60 viruliferous aphids were used per plant in the inoculation experiments.  相似文献   

19.
Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.

This study explores the immune response induced by wild type and variant SARS-CoV-2 spike proteins, and the protection that these immune responses provide against challenge with wild type virus in the mouse model.  相似文献   

20.
A single intraperitoneal injection of pregnant mice with a monovalent Formalin-inactivated influenza A virus vaccine protected their offspring against a lethal challenge dose of the same influenza A virus H3N2, H2N2, and H1N1 subtypes, as well as against challenge with the other two subtypes. Degree of protection was vaccine dose related. Cross-fostering of neonates indicated that protection was conferred by breast milk antibodies. Serum virus-specific neutralizing antibodies in the mothers and neonates correlated with resistance to vaccine virus, but were detected against other subtypes only in a complement enhancement test or when high doses of vaccine were given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号