首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The mature mammalian erythrocyte has a unique membranoskeleton, the spectrin-actin complex, which is responsible for many of the unusual membrane properties of the erythrocyte. Previous studies have shown that in successive stages of differentiation of the erythropoietic series leading to the mature erythrocyte there is a progressive increase in the density of spectrin associated with the membranes of these cells. An important stage of this progression occurs during the enucleation of the late erythroblast to produce the incipient reticulocyte, when all of the spectrin of the former cell is sequestered to the membrane of the reticulocyte. The reticulocyte itself, however, does not exhibit a fully formed membranoskeleton. In particular, the in vitro binding of multivalent ligands to specific membrane receptors on the reticulocyte was shown to cause a clustering of some fractions of these ligand-receptor complexes into special mobile domains on the cell surface. These domains of clustered ligand-receptor complexes became invaginated and endocytosed as small vesicles. By immunoelectron microscopic experiments, these invaginations and endocytosed vesicles were found to be specifically free of spectrin on their cytoplasmic surfaces. These earlier findings then raised the possibility that the maturation of reticulocytes to mature erythrocytes in vivo might involve a progressive loss of reticulocyte membrane free of spectrin, thereby producing a still more concentrated spectrin-actin membranoskeleton in the erythrocyte than in the reticulocyte. This proposal is tested experimentally in this paper. In vivo reticulocytes were observed in ultrathin frozen sections of spleens from rabbits rendered anemic by phenylhydrazine treatment. These sections were indirectly immunolabeled with ferritin-antibody reagents directed to rabbit spectrin. Most reticulocytes in a section had one or more surface invaginations and one or more intra-cellular vesicles that were devoid of spectrin labeling. The erythrocytes in the same sections did not exhibit these features, and their membranes were everywhere uniformly labeled for spectrin. Spectrin-free surface invaginations and intracellular vesicle were also observed with reticulocytes within normal rabbit spleens. Based on these results, a scheme for membrane remodeling during reticulocyte maturation in vivo is proposed.  相似文献   

2.
The erythrocyte of the human neonate exhibits clustering and endocytosis of membrane receptors in response to the plant lectin concanavalin A, but erythrocytes from adults do not. Because the phosphorylation of spectrin has been postulated to influence protein mobility in human erythrocyte membranes, the phosphorylation of spectrin was compared in intact neonatal and adult human erythrocytes. No difference in spectrin phosphorylation was seen. The addition of concanavalin A under conditions which produce protein mobility resulted in no change in spectrin phosphorylation.  相似文献   

3.
The distribution and mobility of concanavalin A (Con A) and Ricinus communis agglutinin (RCA) receptors (binding sites) on the external surfaces of Purkinje, hippocampal pyramidal, and granule cells and their attached boutons were studied using ferritin-lectin conjugates. Dendritic fields of these cells were isolated by microdissection and gently homogenized. Cell fragments and pre- and postsynaptic membranes were labeled with the ferritin-lectin conjugates at a variety of temperatures, and the distribution of lectin receptors was determined by electron microscopy. Both classes of these lectin receptors were concentrated at nearly all open and partially open postsynaptic junctional membranes of asymmetric-type synapses on all three neuron types. Con A receptors were most concentrated at the junctional membrane region, indicating that the mature neuron has a specialized nonrandom organization of carbohydrates on its outer surface. Lectin receptors located on postsynaptic junctional membranes appeared to be restricted in their mobility compared to similar classes of receptors on extrajunctional membrane regions. Labeling with ferritin-RCA and - Con A at 37 degrees C produced clustering of lectin receptors on nonjunctional surfaces; however, Con A and RCA receptors retained their nonrandom topographic distribution on the postsynaptic junctional surface. The restricted mobility of lectin receptors was an inherent property of the postsynaptic membrane since the presynaptic membrane was absent. It is proposed that structures in the postsynaptic density may be transmembrane-linked to postsynaptic receptors and thereby determine topographic distribution and limit diffusion of specialized synaptic molecules. Speicalized receptor displays may play an important role in the formation and maintenance of specific synaptic contacts.  相似文献   

4.
Transformed murine hematopoietic cells of several lineages bound the fluorescent membrane probe merocyanine 540, whereas their normal counterparts did not. Similar selective binding was reproduced in artificial liposomes which bound this probe above their phase transition temperature, but not below it. The regions of the membrane to which merocyanine 540 binds along with the receptors for the lectin concanavalin A, but not the receptors for the lectin wheat germ agglutinin, were rearranged during the course of induced differentiation of erythroleukemia cells. Based on these findings, we propose a model of hematopoietic cell surface differentiation in which proteins such as concanavalin A receptors, which are destined for removal from the plasma membrane, are specifically associated with disordered, liquid-like lipid domains which can be visualized with merocyanine 540. For the specific case of erythroid differentiation, these domains and their associated proteins are collected at the region of the membrane where nuclear extrusion occurs and are eliminated from the reticulocyte plasma membrane by the enucleation event.  相似文献   

5.
It has previously shown (Schekman, R., and S.J. Singer, Proc. Natl. Acad. Sci. U.S.A. 73:4075-4079) that receptors in the membranes of neonatal human erythrocytes show a restricted degree of lateral mobility, whereas in adult human erythrocytes the receptors are essentially immobile. This restricted mobility is exhibited, for example, when concanavalin A (Con A) induces a limited clustering of its receptors in the neonatal erythrocyte membrane, resulting in the formation of invaginations and endocytic vesicles. This does not happen with adult cells. By the use of indirect immunoferritin labeling of ultrathin frozen sections of Con A-treated neonatal blood cells, we now show that the invaginations and endocytotic vesicles do not stain for spectrin, whereas the adjacent unperturbed membrane is heavily stained. The reticulocytes in the neonatal cell population undergo substantially more Con A-induced invagination and endocytosis than do the erythrocytes. These results lend strong support to the hypothesis that specialized discrete domains exist, or are induced, in the membranes of these neonatal cells, in which receptors are laterally mobile, whereas in the remaining (and predominant) part of the membrane the receptors are immobile. Such mobile domains are characterized by an absence of spectrin. During the maturation of the neonatal reticulocyte to erythrocyte, it is proposed that these domains are in large part, but not completely, eliminated.  相似文献   

6.
M Langner  E A Repasky  S W Hui 《FEBS letters》1992,305(3):197-202
We have previously established that T and B lymphocytes in situ are remarkably heterogeneous with respect to the cytoskeletal protein spectrin. Since in erythrocytes spectrin is known to play an important role in the regulation of membrane fluidity, lipid organization and lateral mobility of membrane proteins, we have sought to determine if the heterogeneous patterns of spectrin distribution that we have observed are related to possible differences in membrane lipid organization in these various subsets. To this end, we have utilized a fluorescent pyrene-labelled phospholipid as a probe of the lipid lateral mobility and have examined two related T cell systems maintained in vitro, DO.11.10 cells and a spontaneously arising variant, DO.11.10V. In these (and other cloned in vitro systems) we have previously observed that the cells homogeneously express one of the kinds of spectrin distribution patterns observed in situ. Thus the uniformity of staining of these systems permits us to address whether the various patterns of spectrin distribution may be predictive of differences in membrane lipid properties. Here we show that in cells in which there is little or nor spectrin at the plasma membrane (DO.11.10) that the lipids in the plasma membrane are considerably less mobile than in its related variant in which spectrin is diffusely distributed within the cell and at the plasma membrane. From this and previous results, we conclude that differences in the distribution of the cytoskeletal protein spectrin among lymphocytes may be a useful parameter in helping to predict the status of membrane lipid organization.  相似文献   

7.
Electron microscopic cytochemical studies were made on saccharides involved in the plasma membranes of rat ascites hepatoma cells (AH7974F) using ferritin-conjugated lectins and dialysed iron (DI). In the rat hepatoma cells, saccharide receptors for each of the three lectins used (concanavalin A (ConA), wheat germ agglutinin (WGA) and Ricinus communis agglutinin (RCA)) were shown to be distributed homogeneously throughout the plasma membranes. When the cells were agglutinated, however, the saccharide receptors for each lectin appeared to form clusters on the plasma membranes. The cluster formation induced by one lectin was found to lead to a changed distribution of saccharide receptors for another lectin. None of the cluster formation types induced by lectins yield any noticeable effects upon the distribution of DI reactive acidic saccharides on the plasma membranes.  相似文献   

8.
Summary The composition of the surface coat in embryonic cells ofXenopus laevis was examined by agglutination and fluorescent staining with lectins.Cells of early and mid gastrula stages were agglutinated by lectins specific for D-mannose, D-galactose, L-fucose, N-acetyl-D-glucosamine and N-acetyl-D-galactosamine. No differences in agglutinability among ectoderm, mesoderm and endoderm cells were observed with lectins specific for D-mannose, D-galactose and N-acetyl-D-galactosamine, though agglutination of gastrula cells with fluorescent lectins revealed considerable differences in the intensity of lectin binding among cells within an aggregate. These differences in amount of lectin bound were not related to cell size or morphology. Patches of fluorescent material formed on the cells, suggesting that lectin receptors are mobile in the plane of the plasma membrane.In the early cleavage stages intensive lectin binding occurs only at the boundary between preexisting and nascent plasma membranes. The external surface of the embryo has few lectin receptors up to the late gastrula stage. The unpigmented nascent plasma membranes, when exposed to fluorescent lectins, do not assume any fluorescence distinguishable from the background autofluorescence of yolk, in stages up to the mid-blastula. From this stage onwards lectin binding was observed on the membranes of the reverse side of surface layer cells and on the membranes of deep layer cells. During gastrulation there is an accumulation of lectin-binding material on surfaces involved in intercellular contacts.The significance of lectin binding material for morphogenesis is discussed.  相似文献   

9.
Spectrin in isolated erythrocyte membranes is known to undergo tetramer to dimer transformation upon hypotonic incubation at 37 degrees C. In the present study, we detect no such transformation in intact erythrocytes in which hypotonicity is achieved by valinomycin treatment followed by hypotonic swelling. The inhibition of spectrin tetramer to dimer transformation is attributable to intracellular hemoglobin, since the addition of hemoglobin to isolated membranes or spectrin extracts blocks a similar spectrin transformation. However, the inhibitory effect is not limited to hemoglobin; other proteins including heme-containing proteins and basic proteins such as cytochrome c, ribonuclease, and albumin are also effective. The magnitude of their effect is proportional to the increased pI value of these proteins. We conclude that the stabilizing effect of these proteins on spectrin tetramers under hypotonic conditions is partly due to their non-ideality, which excludes water from spectrin and thus increases the effective concentration of spectrin, and to their electrostatic interactions with spectrin. In addition, promotion of spectrin self-association by hemoglobin under hypotonic conditions increases the stability of membrane skeletons against mechanical shearing. More importantly, the hemoglobin effect on spectrin self-association is demonstrable at physiological hemoglobin concentration, pH, and osmolarity, suggesting that in intact red cells the spectrin dimer-dimer association, as well as the membrane skeletal structure, is strengthened by intracellular hemoglobin.  相似文献   

10.
The organization of the plasma membrane of cells in lipid domains affects the way the membrane interacts with the underlying protein skeleton, which in turn affects the lateral mobility of lipid and protein molecules in the membrane. Membrane fluidity properties can be monitored by various approaches, the most versatile of which is fluorescence recovery after photobleaching (FRAP). We extended previous FRAP experiments on isolated cochlear outer hair cells (OHCs) by analyzing the two-dimensional pattern of lipid diffusion in the lateral membrane of these cells. We found that membrane lipid mobility in freshly isolated OHCs is orthotropic, diffusion being faster in the axial direction of the cell and slower in the circumferential direction. Increasing the cell's turgor pressure by osmotic challenge reduced the axial diffusion constant, but had only a slight effect on circumferential diffusion. Our results suggest that lipid mobility in the OHC plasma membrane is affected by the presence of the cell's orthotropic membrane skeleton. This effect could reflect interaction with spectrin filaments or with other membrane skeletal proteins. We also performed a number of FRAP measurements in temporal bone preparations preserving the structural integrity of the hearing organ. The diffusion rates measured for OHCs in this preparation were in good agreement with those obtained in isolated OHCs, and comparable to the mobility rates measured on the sensory inner hair cells. These observations support the idea that the plasma membranes of both types of hair cells share similar highly fluid phases in the intact organ. Lipid mobility was significantly slower in the membranes of supporting cells of the organ of Corti, which could reflect differences in lipid phase or stronger hindrance by the cytoskeleton in these membranes.  相似文献   

11.
We have used two Chinese hamster ovary subclones whose surface phenotype has been extensively investigated with regard concanavalin A-mediated cell-cell agglutination and concanavalin A-induced receptor site clustering to investigate what changes in membrane composition, if any, can be correlated with the concanavalin A-detected changes in surface phenotype. These cell clones are uniquely disposed for this purpose since maintenance of the cells under different growth conditions produces changes in agglutinability and receptor site mobility in one cell clone (H-7W) but not the other (K-1). After extensive characterization of the surface membranes of these two subclones we have been unable to identify any change in the membrane peptides, glycopeptide, cholesterol, or fatty acid composition which can be directly correlated with the concanavalin A-detected surface phenotypes. It is of particular interest to note that we have been unable to correlate the presence or absence of the large external transformation-sensitive glycoprotein with the relative mobility of the lectin receptors or with the degree of concanavalin A-mediated cell agglutination. Furthermore we have been unable, in this system, to corroborate earlier data suggesting a role for cholesterol in determining the relative mobility of the lectin receptors. Thus using a cell system consisting of genetically matched cell clones, we have been unable to identify any changes in the biochemical composition of the plasma membrane which might be associated with the surface phenotypes detected by concanavalin A.  相似文献   

12.
Mammalian erythroid cells undergo enucleation, an asymmetric cell division involving extrusion of a pycnotic nucleus enveloped by the plasma membrane. The mechanisms that power and regulate the enucleation process have remained obscure. Here, we show that deregulation of Rac GTPase during a late stage of erythropoiesis completely blocks enucleation of cultured mouse fetal erythroblasts without affecting their proliferation or differentiation. Formation of the contractile actin ring (CAR) on the plasma membrane of enucleating erythroblasts was disrupted by inhibition of Rac GTPases. Furthermore, we demonstrate that mDia2, a downstream effector of Rho GTPases and a formin protein required for nucleation of unbranched actin filaments, is also required for enucleation of mouse fetal erythroblasts. We show that Rac1 and Rac2 bind to mDia2 in a GTP-dependent manner and that downregulation of mDia2, but not mDia1, by small interfering RNA (siRNA) during the late stages of erythropoiesis blocked both CAR formation and erythroblast enucleation. Additionally, overexpression of a constitutively active mutant of mDia2 rescued the enucleation defects induced by the inhibition of Rac GTPases. These results reveal important roles for Rac GTPases and their effector mDia2 in enucleation of mammalian erythroblasts.  相似文献   

13.
Spectrin, a component of the membrane skeleton in erythrocytes and other animal cells, has also been identified in plant and fungal cells. However, its postulated role, i.e., the maintenance of shape and elasticity of the plasma membrane, is probably not exerted in walled cells. To study spectrin in these cells, we chose yeasts because of a high morphological variability of their life cycle. The localization of spectrin in the cells and protoplasts of Saccharomyces cerevisiae and Schizosaccharomyces japonicus var. versatilis was detected by immunoblotting, indirect immunofluorescence, and immunogold electron microscopy techniques with the use of anti-chicken and anti-human erythrocyte spectrin antibodies. A protein band of 220-240 kDa and some bands of lower relative mass were detected in cell and protoplast extracts of both yeast strains. Spectrin-like proteins were revealed by fluorescence microscopy at cell surfaces and in vacuolar membranes. Immunogold-labelling showed spectrin-like proteins in the plasma membrane, endoplasmic reticulum, vacuoles, nuclei, vesicles, mitochondria, and cell walls. The topology of spectrin was not affected by actin depolymerization with Latrunculin B nor was it changed in either act1-1 or cdc42 mutants, under restrictive conditions. Under osmotic stress, both spectrin and actin were delocalized and appeared in the form of large clusters in the cytoplasm. It is concluded that a protein cross-reacting with spectrin antibodies is present in fission and budding yeasts. Generally, it is located in the proximity of the plasma membrane and other intracellular membranes, probably as a part of the membrane skeleton. No evidence of its relationship to either actin or growth zones of the cell can be provided.  相似文献   

14.
Mammalian erythropoiesis includes a step in which the nucleus is extruded through the cell membrane. We have investigated the relationship between concanavalinA (conA) plasma membrane receptors, which are known to leave the incipient reticulocyte during enucleation, and regions of the plasma membrane which bind merocyanine 540, a differentiation-specific marker of hematopoietic cells. The distribution of these two fluorescent probes was examined on living cells from the spleens of neonatal mice and on erythroleukemia cells induced to enucleate in culture. In both cases, the region of the membrane extruded with the nucleus preferentially binds conA and merocyanine 540, whereas the plasma membrane which is left behind retains the capacity to bind another lectin, wheat germ agglutinin (WGA). The implications of these findings are discussed with respect to the mechanism by which markers are eliminated from the erythrocyte cell surface.  相似文献   

15.
16.
The distribution of receptors for concanavalin A (Con A) and anionic groups on plasma membranes of developing blood cells was investigated in the rat. Glutaraldehyde-fixed bone marrow and circulating blood cells were exposed to ferritin-conjugated Con A or positively chaged ferric oxide (CI) and processed for electro n microscopy. The frequency of Con A and CI binding sites varied during different erythroid developmental stages and amont different leukoid cell types. There was a constant inverse relationship between Con A and CI binding sites. Among leukoid cells, Con A binding was high on plasma cells and macrophages, lower on neutrophils and lymphocytes, and still lower on eosinophils and basophils; CI binding was highest in the latter and lowest in plasma cells and macrophages. Among erythroid cells, there was a progressive increase in Con A and a decrease in CI binding after successive divisions of erythroblasts, and a progressive decrease in Con A and an increase in CI binding upon maturation of the orthochromatic erythroblast to the reticulocyte. The most pronounced modification in distribution of these sites occurred during nuclear expulsion: that protion of the plasma membrane surrounding the extruded nucleus was heavily labeled by Con A (up to four times that of the orthochromatic erythroblast) whereas the reticulocyte had considerably fewer sites. The situation was reversed with CI. The results suggest that the concentration of nonsialated glycoproteins (to which Con A binds) varies inversely to that of sialoproteins (to which CI binds) in the membrane of the differentiating erythroid cell. The remarkable changes observed at the time of nuclear extrusion suggest that there is either local modification of glycosylated groups with removal of sialyl residues from the membrane surrounding the extruded nucleus of selective segregation of membrane glycoproteins leading to a high concentration of sialoproteins (glycophroin) in the membrane of the mature erythrocyte.  相似文献   

17.
We have made observations, by double fluorescence staining of the same cell, of the distributions of surface receptors, and of intracellular actin and myosin, on cultured normal fibroblasts and other flat cells, and on lymphocytes and other rounded cells. The binding of multivalent ligands (a lectin or specific antibodies) to a cell surface receptor on flat cells clusters the cell receptors into small patches, which line up directly over the actin- and myosin-containing stress fibers inside the cell. Similar ligands binding to rounded cells can cause their surface receptors to be collected into caps on the surface, and these caps are invariably found to be associated with concentrations of actin and myosin under the capped membrane. Although these ligand-induced surface phenomena appear to be different on flat and rounded cells, we propose that in both cases clusters of receptors become linked across the membrane to actin- and myosin-containing structures. In flat cells these structures are very long stress fibers; therefore, when clusters of receptors become linked to these fibers, the clusters are immobilized. In round cells, membrane-associated actin- and myosin-containing structures are apparently much less extensive than in flat cells; therefore, clusters of receptors linked to these structures are still mobile in the plane of the membrane. We suggest that in this case the clusters are then actively collected into a cap by an analogue of the muscle sliding filament mechanism. To explain the transmembrane linkage, we propose that actin is associated with the plasma membrane as a peripheral protein which is directly or indirectly bound to an integral protein (or proteins) X of the membrane. Individual molecules of any receptor are not bound to X, but after they are specifically clustered into patches, a patch of receptors then becomes bound to S and hence to actin/myosin. Patching and capping of specific receptors on rounded cells is often accompanied by a specific endocytosis of the ligand-receptor complexes. This represents one common transport mechanism of a protein (the ligand) across the plasma membrane. The possibility is discussed that this type of endocytosis is mediated by a transmembrane linkage of the clustered receptor to actin/myosin. Another mechanism of endocytosis involves the “coated pit” structures that are observed by electron microscopy of plasma membranes. The possible relationships between an actin/myosin and a coated pit mechanism of endocytosis are explored.  相似文献   

18.
《The Journal of cell biology》1994,125(5):1057-1065
A spectrin-based membrane skeleton is important for the stability and organization of the erythrocyte. To study the role of spectrin in cells that possess complex cytoskeletons, we have generated alpha-spectrin- deficient erythroleukemia cell lines from sph/sph mice. These cells contain beta-spectrin, but lack alpha-spectrin as determined by immunoblot and Northern blot analyses. The effects of alpha-spectrin deficiency are apparent in the cells' irregular shape and fragility in culture. Capping of membrane glycoproteins by fluorescent lectin or antibodies occurs more rapidly in sph/sph than in wild-type erythroleukemia cells, and the caps appear more concentrated. The data support the idea that spectrin plays an important role in organizing membrane structure and limiting the lateral mobility of integral membrane glycoproteins in cells other than mature erythrocytes.  相似文献   

19.
The mobility of plant lectin receptors in the plane of the membrane is examined for cells prepared from embryonic chick neural retinas by a variety of procedures. Cells liberated from the intact tissue by trypsin treatment followed by mechanical dissociation are able to redistribute their receptors into 'caps' both spontaneously and in the presence of a multivalent lectin. These cells, dispersed by trypsinization, upon repair in culture for a suitable period of time lose their ability to redistribute lectin receptors. Cells dispersed by mechanical means without prior trypsin treatment are unable to undergo 'cap' formation. In addition, cells within intact tissues are also unable to redistribute their lectin receptors into 'caps.' Based on these observations we propose that within solid tissues which have assumed their characteristic architecture, cell surfaces are immobilized, and that this phenomenon may be a critical parameter in determining the potential of a cell to undergo morphogenetic rearrangements.  相似文献   

20.
In order to investigate alterations in surface structure in transformed lymphocytes, calf submandibular lymph node cell suspensions were oxidized with NaIO4. Oxidezed lymphocytes were morphologically transformed and had higher rates of DNA synthesis by 2 days after treatment. These results were prevented by reduction of the cell suspension with NaBH4, or by neuraminidase treatment of cells prior to oxidation. The amount of 125I-labeled Agaricus bisporus lectin bound to cells immediately after oxidation and the affinity constant for binding were increased over 2-fold, while cells immediately following oxidation and reduction showed decreased receptors with still higher affinity for the lectin compared to untreated cells. The amount of Phaseolus vulgaris lectin bound to oxidezed cells was also increased, but affinity was unchanged. Immediately following oxidation and reduction, these receptor sites were unchanged in number and affinity from untreated cells. In contrast, the number and affinity of receptors for concanavalin A were not changed immediately after oxidation or oxidation and reduction. In order to define the extent of compositional changes in surface glycoprotein receptors, plasma membranes were isolated from frozen calf submandibular lymph nodes. Compared to untreated plasma membranes, oxidezed membranes had similar contents of galactose, mannose, N-acetylglucosamine, N-acetylgalactosamine, fucose, and amino acids. Sialic acid content of oxidized membranes was reduced when measured by thiobarbituric acid assay. Sialic acids of untreated plasma membranes co-chromatographed with N-glycolylneurominic acid and N-acetylneuraminic acid, while those of oxidized membranes co-chromatographed with N-glycolylneuraminic acid and 5-acetamido-3,5-dideoxy-L-arabino-7-aldehydo-2-heptulosonic acid. Therefore, specific surface conformational changes in certain classes of membrane glycoproteins are associated with mild Malapradian oxidation of membrane sialic acids. These temporally precede NaIO4-induced transformation of calf lymphocytes. This is consistent with an hypothesis of membrane-mediated stimulation of lymphocyte transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号