首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Ruetz T  Cornick S  Guttman JA 《PloS one》2011,6(5):e19940
Various enteric bacterial pathogens target the host cell cytoskeletal machinery as a crucial event in their pathogenesis. Despite thorough studies detailing strategies microbes use to exploit these components of the host cell, the role of the spectrin-based cytoskeleton has been largely overlooked. Here we show that the spectrin cytoskeleton is a host system that is hijacked by adherent (Entropathogenic Escherichia coli [EPEC]), invasive triggering (Salmonella enterica serovar Typhimurium [S. Typhimurium]) and invasive zippering (Listeria monocytogenes) bacteria. We demonstrate that spectrin cytoskeletal proteins are recruited to EPEC pedestals, S. Typhimurium membrane ruffles and Salmonella containing vacuoles (SCVs), as well as sites of invasion and comet tail initiation by L. monocytogenes. Spectrin was often seen co-localizing with actin filaments at the cell periphery, however a disconnect between the actin and spectrin cytoskeletons was also observed. During infections with S. Typhimurium ΔsipA, actin-rich membrane ruffles at characteristic sites of bacterial invasion often occurred in the absence of spectrin cytoskeletal proteins. Additionally, early in the formation of L. monocytogenes comet tails, spectrin cytoskeletal elements were recruited to the surface of the internalized bacteria independent of actin filaments. Further studies revealed the presence of the spectrin cytoskeleton during SCV and Listeria comet tail formation, highlighting novel cytoplasmic roles for the spectrin cytoskeleton. SiRNA targeted against spectrin and the spectrin-associated proteins severely diminished EPEC pedestal formation as well as S. Typhimurium and L. monocytogenes invasion. Ultimately, these findings identify the spectrin cytoskeleton as a ubiquitous target of enteric bacterial pathogens and indicate that this cytoskeletal system is critical for these infections to progress.  相似文献   

2.
By shadowing specimens dried onto mica sheets we have obtained clear images of actin crosslinked by spectrin, an actin-binding protein found in erythrocytes. We conclude that spectrin dimers possess a single binding site for F actin. Tetramers formed by head-to-head association of two dimers possess two actin binding sites, one at each tail. Polymerizing G actin in the presence of spectrin tetramers or mixing preformed F actin with spectrin tetramer plus band 4.1 results in an extensively crosslinked network of actin filaments. When G actin is polymerized in the presence of spectrin at spectrin:actin mole ratios close to that present on the erythrocyte membrane, large amorphous protein networks are formed. These networks are clusters of spectrin around 25 nm diameter structures which may be actin protofilaments. These networks are similar to the cytoskeletal network seen after erythrocyte membranes are extracted with detergent, and may represent the first in vitro assembly of a cytoskeletal complex resembling that of the native cell both biochemically and structurally.  相似文献   

3.
S A Morris  M Kaufman 《Blut》1989,59(4):385-389
A method has been developed for the assessment of the number of spectrin dimer units associated with each actin protofilament junction, in the membrane cytoskeletal network (i.e. the degree of branching) of the red cell. Ghosts are first exposed to elevated temperature at low ionic strength to dissociate some 65% of the spectrin tetramers (that link the network junctions) into dimers, without causing their release from the actin filaments. Non-ionic detergent is then added to solubilize the membrane itself with its intrinsic proteins, so as to liberate the cytoskeletal material, and the mixture is immediately examined in the analytical ultracentrifuge. The predominant components observed are isolated junctions (20 S), free spectrin dimers and the residual undissociated cytoskeletal material, with very minor components, probably corresponding to multiple junctions, linked by spectrin tetramers. The junction boundary is homogeneous within the accuracy of measurement and is taken to correspond to a complex containing six spectrin dimers, known to predominate in situ. About 17% of the total network is liberated in this form and 12% as free spectrin dimers. In hereditary spherocytosis both the size of the junction complex (as reflected by its sedimentation coefficient) and the proportion of the complex and of free spectrin liberated are indistinguishable from normal values. We conclude that the reported deficit of spectrin in hereditary spherocytosis is not reflected by a lower degree of branching of the network, and, if the membrane area is not correspondingly reduced, this must mean that the junctions are more widely spaced and the spectrin tetramers therefore more extended. In metabolically depleted cells, in which the cytoskeletal proteins are known to be extensively dephosphorylated, there is no change in the sedimentation pattern and thus no detectable loss of spectrin from the junctions or weakening in the cohesion of the cytoskeletal network.  相似文献   

4.
Zhao KN  Masci PP  Lavin MF 《PloS one》2011,6(12):e28267
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.  相似文献   

5.
In recent years considerable progress has been made in the understanding of the structure and function of the red blood cell membrane. The protein spectrin, of high molecular weight and propensity for self-association, appears to play a major role, in concert with actin, in maintaining the shape and integrity of the membrane. A study of the physical-chemical properties of spectrin, and its size, shape, self-association pattern, and its interaction with other components, leads to a plausible model for the way this protein performs its biological role. The evidence from the structure and interactions of spectrin suggests a structure which is relatively symmetrical yet highly expanded, and which allows extensive, two-dimensional network formation with actin. In these respects, the structure of spectrin is quite different from that of myosin, to which it has often been likened.  相似文献   

6.
A common feature of multicellular animals is the ubiquitous presence of the spectrin cytoskeleton. Although discovered over 30 yr ago, the function of spectrin in non-erythrocytes has remained elusive. We have found that the spc-1 gene encodes the only alpha spectrin gene in the Caenorhabditis elegans genome. During embryogenesis, alpha spectrin localizes to the cell membrane in most if not all cells, starting at the first cell stage. Interestingly, this localization is dependent on beta spectrin but not beta(Heavy) spectrin. Furthermore, analysis of spc-1 mutants indicates that beta spectrin requires alpha spectrin to be stably recruited to the cell membrane. Animals lacking functional alpha spectrin fail to complete embryonic elongation and die just after hatching. These mutant animals have defects in the organization of the hypodermal apical actin cytoskeleton that is required for elongation. In addition, we find that the process of elongation is required for the proper differentiation of the body wall muscle. Specifically, when compared with myofilaments in wild-type animals the myofilaments of the body wall muscle in mutant animals are abnormally oriented relative to the longitudinal axis of the embryo, and the body wall muscle cells do not undergo normal cell shape changes.  相似文献   

7.
We examined whether adducin function is regulated through Rho-kinase after agonist stimulation in platelets. A variety of stimuli such as thrombin, STA(2) (a stable analog of TXA(2)), Ca(2+) ionophore, phorbol diester, and shear stress induced phosphorylation of alpha-adducin at Thr445. Preincubation with the Rho-kinase inhibitor Y-27632 in platelets inhibited agonist-induced phosphorylation of alpha-adducin. STA(2) stimulation led to a redistribution of adducin from Triton-insoluble (high speed) fraction (membrane skeleton) to Triton-insoluble (low speed) fraction (cytoskeleton) and detergent-soluble fraction. Phosphoadducin at Thr445 was selectively isolated in the cytoskeletal fraction, whereas phosphoadducin at Ser726 was mainly present in the Triton-soluble fraction. Y-27632 inhibition of STA(2)-induced alpha-adducin phosphorylation at Thr445 inhibited incorporation of alpha-adducin and spectrin into the platelet cytoskeleton, although Y-27632 did not affect phosphorylation of alpha-adducin at Ser726. These results suggest that Rho-kinase regulates the association of alpha-adducin and spectrin with the actin cytoskeleton in platelet activation.  相似文献   

8.
Ankyrin mediates the primary attachment between beta spectrin and protein 3. Ankyrin and spectrin interact in a positively cooperative fashion such that ankyrin binding increases the extent of spectrin tetramer and oligomer formation (Giorgi and Morrow: submitted, 1988). This cooperative interaction is enhanced by the cytoplasmic domain of protein 3, which is prepared as a 45-41-kDa fragment generated by chymotryptic digestion of erythrocyte membranes. Using sensitive isotope-ratio methods and nondenaturing PAGE, we now demonstrate directly (1) the enhanced affinity of ankyrin for spectrin oligomers compared to spectrin dimers; (2) a selective stimulation of the affinity of ankyrin for spectrin oligomer by the 43-kDa cytoplasmic domain of protein 3; and (3) a selective reduction in the affinity of ankyrin for spectrin tetramer and oligomer after its phosphorylation by the erythrocyte cAMP-independent membrane kinase. The phosphorylation of ankyrin does not affect its binding to spectrin dimer. Ankyrin also enhances the rate of interconversion between dimer-tetramer-oligomer by 2-3-fold at 30 degrees C, and in the presence of the 43-kDa fragment, ankyrin stimulates the rate of oligomer interconversions by nearly 40-fold at this temperature. These results demonstrate a long-range cooperative interaction between an integral membrane protein and the peripheral cytoskeleton and indicate that this linkage may be regulated by covalent protein phosphorylation. Such interactions may be of general importance in nonerythroid cells.  相似文献   

9.
A part of the spectrin extracted from red cell membranes at low ionic strength occurs in the form of a high-molecular weight oligomeric complex with actin and proteins 4.1 and 4.9. When the extraction is performed at 35 degrees, the spectrin is present in this complex as the dimer, all higher forms being dissociated. We have been unable to establish any correlation between the fraction of the spectrin thus complexed and the metabolic state of the cell. At least a large part of the complex appears to be a defined monodisperse species, sedimenting at 31S. The actin is present as short protofilaments. The average number of spectrin molecules associated with each molecule of complex has been studied by cytochalasin binding and electron microscopy. The complexes present the appearance in the electron microscope of spiders, in which the legs are spectrin dimers, attached to a globular element, containing by inference, actin and proteins 4.1 and 4.9; they are active in nucleating the polymerization of G-actin. The complexes are extremely stable, being resistant to dissociation under the conditions of the deoxyribonuclease assay, even after treatment with trypsin to degrade the actin-associated proteins. It is suggested that the complexes represent intact junctions of the membrane cytoskeletal network. Relevant structural features of the network are revealed by electron microscopy. The results lead to inferences concerning the mechanism of dissociation of the network from the membrane.  相似文献   

10.
Controversies at the cytoplasmic face of the cadherin-based adhesion complex.   总被引:12,自引:0,他引:12  
Cadherin-mediated cell-cell interactions are modulated by protein interactions at the cytoplasmic face of the membrane. Recent work has shown that phosphorylation of both p120(ctn) and beta-catenin affects their interaction with cadherins and the molecular connections to the cytoskeleton. The cytoskeletal connections most probably include interactions between alpha-catenin, and/or alpha-actinin, vinculin, ZO-1, actin and possibly spectrin.  相似文献   

11.
The role of band 4.1 in the association of actin with erythrocyte membranes   总被引:8,自引:0,他引:8  
Spectrin stimulates the association of F-actin with erythrocyte inside-out vesicles. Although inside-out vesicles are nearly devoid of two of the three major cytoskeletal proteins, spectrin and actin, they retain nearly all of the cytoskeletal protein designated band 4.1. Inside-out vesicles which have been substantially depleted of band 4.1 by extraction in 1 M KCl, 0.4 M urea and then reconstituted with spectrin show a markedly diminished ability to bind actin by comparison with vesicles containing normal amounts of band 4.1. This diminution is not due to an impaired ability of the vesicles to bind spectrin. Addition of purified band 4.1 to vesicles either before or after they have been reconstituted with spectrin restores their actin binding capacity to near normal levels as does addition of a spectrin-band 4.1 complex prepared by sucrose gradient centrifugation. Band 4.1 bound to vesicles in the absence of added spectrin has no effect on actin binding. Our results suggest that a spectrin band 4.1 complex is responsible for binding actin to erythrocyte membranes.  相似文献   

12.
Cell movement and resistance to mechanical forces are largely governed by the cytoskeleton, a three-dimensional network of protein filaments that form viscoelastic networks within the cytoplasm. The cytoskeleton underlying the plasma membrane of most cells is rich in actin filaments whose assembly and disassembly are regulated by actin binding proteins that are stimulated or inhibited by signals received and transmitted at the membrane/cytoplasm interface. Inositol phospholipids, or phosphoinositides, are potent regulators of many actin binding proteins, and changes in the phosphorylation of specific phosphoinositide species or in their spatial localization are associated with cytoskeletal remodeling in vitro. This review will focus on recent studies directed at defining the structural features of phosphoinositide binding sites in actin binding proteins and on the influence of the physical state of phosphoinositides on their ability to interact with their target proteins.  相似文献   

13.
We isolated a protein complex containing major cytoskeletal components from the Triton shell of bovine erythrocytes. This protein complex, which we called the 26-S complex, consisted of three major components, spectrin, band-4.1 protein and actin, and one minor component, band-4.9 protein. The molar ratio of spectrin heterodimer:band 4.1:actin was determined by sodium dodecyl sulfate (SDS) gel electrophoresis to be about 1:2:2, approximately the same as that for the Triton shell. By electron microscopic examinations of rotary-shadowed specimens, it was revealed that the 26-S complex had a "spider-like" morphology with a central core and several spectrin heterodimers radiating from it. The number of spectrin arms in the complex was not constant but was in the range between 3 and 6. The complexes with five spectrin heterodimers were the most numerous. The results showed that the 26-S complex contained on the average five spectrin heterodimers, ten band-4.1 polypeptides and ten actin monomers. As judged from the formation of oligomeric 26-S complexes through spectrin arms, the central core of the complex presumably contains band 4.1 and actin. Supporting this conclusion, the central core acted as a nucleus for actin polymerization when the 26-S complex was mixed with G-actin under an actin-polymerizing condition. The 26-S complex could form large aggregates under a certain condition that spectrin was promoted to associate from dimer to tetramer. We conclude that the 26-S complex is the structural unit of the erythrocyte cytoskeleton.  相似文献   

14.
In Discoglossus pictus eggs, only the dimple contains ionic channels active at fertilization; in particular, chloride channels are found in the central portion of the dimple, which is also the site of sperm penetration. Moreover the dimple hosts an imposing cytoskeleton, consisting of a cortical network and bundles of microfilaments extending from the microvilli. Since spectrin cross links actin and is connected through ankyrin to anion transporters in the plasma membrane of erythrocytes as well as to anion channels in other cells, we studied, in D. pictus egg, the relationship between the localization of spectrin and the high polarization of ionic channels and cytoskeletal organization. By means of immunocytochemistry, we localized spectrin exclusively in the egg dimple. In an attempt to trace back the source of spectrin localization, we immunostained sections of D. pictus ovary and localized spectrin in the nuclei of previtellogenic oocytes, where actin is also present. Antispectrin staining remained until germinal vesicle breakdown. By contrast, a cortical localization was found only when the oocytes divided into two hemispheres and into the germinative area (GA), which, after germinal vesicle breakdown, gives rise to the dimple. At this stage the antispectrin signal was particularly strong in the GA. Using Rho-pialloidin, we also established that spectrin is generally present where F-actin is found. However, spectrin and F-actin do not have the same pattern of fluorescence. In conclusion, our data suggest that spectrin may play a role in oocyte and egg polarity. In eggs, it could be instrumental in anchoring to the cytoskeleton membrane proteins such as receptors and ionic channels, including chloride-permeable channels.  相似文献   

15.
Purified human erythrocyte spectrin is able to form large oligomeric species without the collaboration of any other proteins. This reversible self-assembly process is both temperature and concentration dependent and seems to be mediated by the same kinds of low affinity noncovalent associations between spectrin monomers that promote tetramer formation. Low ionic strength extracts of erythrocyte membranes also contain these oligomeric species. These results support the idea that spectrin oligomers and the factors that regulate their formation may be responsible for both the stability and the versatility of the erythrocyte membrane cytoskeleton. It is postulated that the high concentrations of spectrin necessary for oligomerization are maintained in vivo by a high-affinity interaction with ankyrin. Such a coupling of high and low affinity interactions in multifunctional proteins may have significant implications for membrane structure and function.  相似文献   

16.
Chemically tritiated actin from rabbit skeletal muscle was used to investigate the association of G-actin with the red cell membrane. The tritiated actin was shown to be identical to unmodified actin in its ability to polymerize and to activate heavy meromyosin ATPase. Using sealed and unsealed red cell ghosts we have shown that G-actin binds to the cytoplasmic but not the extracellular membrane surface of ghosts. Inside-out vesicles which have been stripped of endogenous actin and spectrin by low-ionic-strength incubation bind little G-actin. However, when a crude spectrin extract containing primarily spectrin, actin, and band 4.1 is added back to stripped vesicles, subsequent binding of G-actin can be increased up to 40-fold. Further, this crude spectrin extract can compete for and abolish G-actin binding to unsealed ghosts. Actin binding to ghosts increases linearly with added G-actin and requires the presence of magnesium. In addition, actin binding is inhibited by cytochalasin B and DNAase I. Negative staining reveals an abundance of actin filaments formed when G-actin is added to reconstituted inside-out vesicles but none when it is added to unreconstituted vesicles. These observations indicate that added G-actin binds to the red cell membrane via filament formation nucleated by some membrane component at the cytoplasmic surface.  相似文献   

17.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

18.
A low-salt extract prepared from human erythrocyte membranes forms a solid gel when purified rabbit muscle G- or F-actin is added to it to give a concentration of approximately 1 mg/ml. This extract contains spectrin, actin, band 4.1, band 4.9, hemoglobin, and several minor components. Pellets obtained by centrifugation of the gelled material at 43,000 g for 10 min contain spectrin, actin, band 4.1, and band 4.9. Although extracts that are diluted severalfold do not gel when actin is added to them, the viscosity of the mixtures increases dramatically over that of G-actin alone, extract alone, or F-actin alone at equivalent concentrations. Heat-denatured extract is completely inactive. Under conditions of physiological ionic strength and pH, information of this supramolecular structure is inhibited by raising the free calcium ion concentration to micromolar levels. Low-salt extracts prepared by initial extraction at 37 degrees C (and stored at 0 degree C) gel after actin is added to them only when warmed, whereas extracts prepared by extraction at 0 degree C are active on ice as well as after warming. Preincubation of the 37 degrees C low-salt extract under conditions that favor conversion of spectrin dimer to tetramer greatly enhances gelation activity at 0 degree C. Conversely, preincubation of the 0 degree C low-salt extract under conditions that favor conversion of spectrin tetramer to dimer greatly diminishes gelation activity at 0 degree C. Spectrin dimers or tetramers are purified from the 37 dgrees or 0 degree C low-salt extract by gel filtration at 4 degrees C over Sepharose 4B. The addition of actin to either purified spectrin dimer (at 32 degrees C) or tetramer (at 0 degree C or 32 degrees C) results in relatively small increases in viscosity, whereas the addition of actin to a high-molecular-weight complex (HMW complex) containing spectrin, actin, band 4.1, and band 4.9 results in dramatic, calcium-sensitive increases in viscosity. These viscosities are comparable to those obtained with the 37 degrees or 0 degree C low-salt extracts. The addition of purified band 4.1 to either purified spectrin dimer (at 32 degrees C) or purified spectrin tetramer (at 0 degree C) plus actin results in large increases in viscosity similar to those observed for the HMW complex and the crude extract, which is in agreement with a recent report by E. Ungewickell, P. M. Bennett, R. Calvert, V. Ohanian, and W. B. Gratzer. 1979 Nature (Lond.) 280:811-814. We suggest that this spectrin-actin-band 4.1 gel represents a major structural component of the erythrocyte cytoskeleton.  相似文献   

19.
Hereditary spherocytosis (HS) is an inherited abnormality of red cell shape and results from defective interactions amongst the components of the cytoskeleton. It is known that spectrin/actin dissociates in low ionic strength media from ghosts and cytoskeletons at a rate which is slower for HS than normal preparations. Hybridization experiments have established that this behaviour is not due to a defective spectrin or actin but resides in a spectrin-binding component of the membrane [Hill, Sawyer, Howlett & Wiley (1981) Biochem. J. 201, 259-266]. In the present study erythrocyte shells have been examined in low ionic strength media and a similar difference in the rate of solubilization has been revealed. Since band 4.1 (but not band 2.1) is a common component of cytoskeletons and shells it is possible that 4.1 may be abnormal in the HS condition. The interaction of band 4.1 with spectrin/actin was examined by low shear falling ball viscometry. The addition of a mixture of band 2.1 and 4.1 to a solution of actin and spectrin tetramer increased the viscosity due to cross-linking of the cytoskeletal elements by band 4.1. When band 2.1/4.1 mixtures were derived from five HS families the viscosity was increased to a greater extent than in the normal controls. This difference was not a result of alterations in the calcium dependence of the spectrin/actin-band 4.1 interaction. The results imply that band 4.1 may be defective in the HS condition.  相似文献   

20.
TREK-1 (KCNK2) is a K(2P) channel that is highly expressed in fetal neurons. This K(+) channel is opened by a variety of stimuli, including membrane stretch and cellular lipids. Here, we show that the expression of TREK-1 markedly alters the cytoskeletal network and induces the formation of actin- and ezrin-rich membrane protrusions. The genetic inactivation of TREK-1 significantly alters the growth cone morphology of cultured embryonic striatal neurons. Cytoskeleton remodelling is crucially dependent on the protein kinase A phosphorylation site S333 and the interactive proton sensor E306, but is independent of channel permeation. Conversely, the actin cytoskeleton tonically represses TREK-1 mechano-sensitivity. Thus, the dialogue between TREK-1 and the actin cytoskeleton might influence both synaptogenesis and neuronal electrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号