首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary Microscopic observations of isotonic suspensions of human red blood cells demonstrate that cell shape is unaltered when the transmembrane electrical potential, orE m , is set in the range –85 to +10 mV with valinomycin at varied external K+, or K o .E m was measured with the fluorescent potentiometric indicator, diS-C3(5), as calibrated by a pH method. Repeating Glaser's experiments in which echinocytosis was attributed to hyperpolarization, we found that at low ionic strength the pH-dependent effects of amphotericin B appear to be unrelated toE m . The effects of increased intracellular Ca2+, or Ca o , on echinocytosis and onE m are separable. With Ca ionophore A23187 half-maximal echinocytosis occurs at greater Ca o than that which induces the half-maximal hyperpolarization associated with Ca-induced K+ conductance (Gardos effect). Thus, cells hyperpolarized by increased Ca o remain discoidal when Ca is below the threshold for echinocytosis. With A23187 and higher Ca o , extensive echinocytosis occurs in cells which are either hyperpolarized or at their resting potential. The Ca-activation curve for echinocytosis is left-shifted by low K o , a new observation consistent with increased DIDS-sensitive uptake of45Ca by hyperpolarized cells. These results support the following conclusions: (1) the shape and membrane potential of human red blood cells are independent under the conditions studied; (2) in cells treated with A23187, the Gardos effect facilitates echinocytosis by increasing Ca.  相似文献   

2.
Summary The effects of four alcohols—n-propyl,n-butyl,n-amyl andn-hexyl alcohol—on the ADP-induced aggregation of gel-filtered bovine platelets were examined. All four alcohols inhibited the aggregation, the order of their effects beingn-propyln-amyl<n-hexyl. Comparison of the inhibitory effects of the alcohols with their physico-chemical properties showed that their degrees of inhibition depended on their hydrophobicities. Moreover, it was suggested that their interaction with the lipid layer of the membrane was important for the inhibition. Studies on the effects of alcohols on the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene-labeled platelets showed that the membrane fluidity of the platelets increased in the same concentration range in which aggregation inhibition was observed. Since the alcohols inhibited aggregation without affecting Ca2+ mobilization in the platelets, as revealed in this study, it was concluded that inhibition of platelet aggregation was due to perturbation of membrane lipids by the alcohols. This hypothesis is supported by several recent studies on the effects of cholesterol and cations, which suggest that a relatively rigid membrane favors platelet aggregation.  相似文献   

3.
Summary Membrane fluidity of bovine platelets was examined with diphenylhexatriene (DPH), its cationic trimethylammonium derivative (TMA-DPH) and anionic propionic acid derivative (DPH-PA). After addition of these probes to platelet suspensions at 37°C, the fluorescence intensity of DPH-PA reached equilibrium within 2 min, whereas those of DPH and TMA-DPH increased gradually. With increase in the fluorescence intensity of TMA-DPH, its fluorescence anisotropy decreased significantly, but the fluorescence anisotropies of DPH-PA and DPH did not change during incubation. The gradual increase of fluorescence intensity of TMA-DPH was due to its penetration into the cytoplasmic side of the platelet membrane, as shown quantitatively by monitoring decrease in its extractability with albumin. Transbilayer movement of TMA-DPH was markedly temperature-dependent, and was scarcely observed at 15°C. The fluorescence intensity of TMA-DPH was much higher in platelet membranes and vesicles of extracted membrane lipids than the initial intensity in intact platelets. Moreover, the fluorescence anisotropy of TMA-DPH was much lower in the former preparations than the initial value in intact platelets. These results suggest that binding sites for TMA-DPH in the cytoplasmic side of the platelet membrane are more fluid than those in the outer leaflet of the plasma membrane. Platelet activation by ionomycin induced specific change in the fluorescence properties of TMA-DPH without causing transbilayer incorporation of the probe.  相似文献   

4.
The purpose of this study was to develop a new dynamic image analyzing technique that will give us the ability to measure the viscoelastic parameters of individual living red blood cells non-invasively, in situ and in real time. With this technique, the bending modulus Kc, the shear elasticity μ and their ratio ε were measured under different temperatures, oxygen partial pressures and osmotic pressures. The results not only show the effects of external conditions on mechanical properties of cell membranes including deformability,flexibility, adhesive ability and plasticity, but also demonstrate that the technique can be used to measure cell membrane parameters continuously under several physiological and pathological conditions.  相似文献   

5.
Acanthocytic red blood cells in patients with abetalipoproteinemia have a decreased membrane fluidity that is associated with increased sphingomyelin/phosphatidylcholine (SM/PC)§ ratios. Here we describe studies designed to gain better insight into (i) the interrelationship between the composition of lipoprotein and red blood cell membrane in abetalipo-proteinemia patients and normal controls; and (ii) how the differences in lipid composition of the red blood cell membrane affect its fluidity. The increased SM/PC ratio found in abetalipoproteinemia plasma high density lipoproteins (HDL) (3 times greater than controls) was paralleled by an increase in this ratio in acanthocytic red cells, but to a lesser degree (almost twice greater than control red cells). Cholesterol/phospholipid mole ratios (C/P) were increased 3-fold in abetalipoproteinemia HDL, but only slightly increased in red cells compared to controls values. As in the controls, 80–85% of abetalipo-proteinemia red cell sphingomyelin was found to be in the outer half of the erythrocyte membrane. Membrane fluidity was defined in terms of microviscosity ({ie116-1}) between 5 and 42°C by the fluorescent polarization of 1,6-diphenylhexatriene (DPH) present in erythrocyte ghost membranes. At all temperatures, membrane microviscosity was higher in abetalipoproteinemia ghosts than controls, but these differences decreased at higher temperatures (12.34 vs 9.79 poise, respectively, at 10°C; 4.63 vs 4.04 poise at 37°C). These differences were eliminated after oxidation of all membrane cholesterol to cholest-4-en-3-one by incubation with cholesterol oxidase. Following cholesterol oxidation, the membrane microviscosity decreased in patient ghosts more than in normal red blood cells so that at all temperatures no significant differences were present relative to control ghosts, in which the apparent microviscosity was also diminished but to a lesser degree. Therefore, although increased SM/PC ratios in abetalipoproteinemia may be responsible for decreased erythrocyte membrane fluidity, these effects are dependent upon normal interactions of cholesterol with red cell phospholipid.  相似文献   

6.
Summary Oscillations in glyceraldehyde-3-phosphate dehydrogenase (GAPD) and glucose-6-phosphate dehydrogenase (G6PD) activities were recorded in suspensions of intact human red blood cells (RBCs) exposed to various light regimens. The periods of these oscillations, defined as “long ultradian,” ranged between 13 and 18 h regardless of light regimen. The patterns of enzymatic activities were the same when assayed at each time point, in full hypotonic hemolysates, and membrane-free hemolysates. However, if hemolysates were prepared by sonication the activity pattern did not exhibit significant oscillations and the activity was higher than that recorded in hypotonic hemolysates. The observed rhythms may reflect a time-dependent attachment and detachment of enzyme molecules from cell membrane, suggesting that at the bound state the enzyme molecules are (temporarily) inactive. Oscillations with similar long ultradian periods were also observed in Ca++ concentration of suspended RBCs and in the binding of Ca++45 to human RBC ghosts. Treatment of the RBCs with A2C or Diamide before the preparation of the ghosts changed or distorted the rhythmic pattern of Ca++45 binding. These results point to the role of the membrane in processing the long ultradian oscillations. The relation between this type of oscillations to circadian rhythm is discussed.  相似文献   

7.
Oxygen equilibrium curves have been measured on human normal red blood cells, at the temperatures of 20, 25, 30, 37 and 41 degrees C, and at pHs ranging from 6.8 to 8.2. The thermodynamical parameters have been determined for the four successive steps of oxygenation and for overall oxygenation, according to the Adair and MWC models [Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol 1965;12:88-118]. The heat release appears to be nearly equal for the four steps. At the first three steps, the delta H change is counterbalanced by a nearly equivalent change of delta S, resulting in a rather small delta G value. delta G is greater at the fourth step, because of diminution of this enthalpy-entropy compensation phenomenon. The four steps are both enthalpy and entropy driven. According to the MWC model, the T to R transition is endothermic, and allosteric quaternary transition occurs at binding of the third oxygen. The average heat release increases by 2.8 kcal/mol when pH raises from 7.4 to 8.2, but flattens below pH 7.4. After correction for the heat of solution of oxygen and for the heat of proton release (referred to intracellular pH), an intrinsic heat for oxygenation of the heme of approximately--13 kcal/mol is obtained for the successive steps of oxygenation (at pH 7.4, 37 degrees C). These results are compared with those previously obtained for pigeon and trout red blood cells.  相似文献   

8.
Membrane fluidity of Toxoplasma gondii: a fluorescence polarization study   总被引:1,自引:0,他引:1  
Toxoplasma gondii membrane fluidity was investigated by fluorescence polarization. We used 1,6-diphenyl 1,3,5-hexatriene (DPH) as a fluorescent hydrophobic probe. Fluorescence anisotropy (r) and degree of order (s) showed high fluidity properties. Chemical analysis was performed on this parasite. We found a low cholesterol/phospholipid ratio, many unsaturated fatty acids chains, and high phosphatidylcholine and low sphingomyelin amounts. These results were in good agreement with the observed high fluidity. This may be related to the great adaptability of Toxoplasma gondii in infesting a wide variety of host cells.  相似文献   

9.
Raman spectroscopy was performed on GSM 900 and 1800 MHz mobile phone signal exposed red blood cells (RBCs). The observed changes in the Raman spectra of mobile signal exposed RBCs compared to unexposed control suggest reduced hemoglobin-oxygen affinity for the exposed cells. The possible mechanism may involve activation of the voltage gated membrane Ca2+ channels by the mobile phone emissions resulting in an increase in the levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) in cells via altered metabolic activities. Further studies carried out with fluorescent Ca2+ indicator confirmed increased intracellular Ca2+ level in the exposed cells. Since intracellular ATP level influences the shape and mechanics of RBCs, exposed cells were studied using diffraction phase microscopy and optical tweezers. Detectable changes in shape and mechanical properties were observed due to mobile signal exposure.  相似文献   

10.
Since lysosomes are prone to osmotic lysis, we have examined the correlation between their physical state and sensitivity to osmotic challenge, using agents which modify membrane fluidity. The latency loss of beta-hexosaminidase after an incubation in hypotonic sucrose medium was followed under different conditions of membrane fluidity, recorded by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene. Increasing fluidity of the lysosomal membranes with benzyl alcohol (BA) and greater rigidity caused by cholesteryl hemisuccinate (CHS) increased and decreased the enzyme latency loss, respectively. The effects of BA and CHS treatments on osmotic sensitivity were reversible subsequently by reciprocal treatments of the lysosomes with CHS and BA, respectively. The results indicate that the physical state of the membrane does indeed affect lysosomal osmotic stability.  相似文献   

11.
The cell membrane permeability governs the rate of solute transport into and out of the cell, significantly affecting the cell's metabolic processes, viability, and potential usefulness in both biotechnological applications and physiological systems. Most previous studies of the cell membrane permeability have neglected the possible effects of suspending medium on membrane transport, even though there is extensive experimental evidence that suspending phase composition can significantly affect other properties related to the cell membrane (e.g., cell deformability, fragility, and aggregation rate). This study examined the effects of suspending phase composition (both proteins and electrolytes) on the permeability of human red blood cells to the metabolites creatinine and uric acid. Data were obtained using a stirred ultrafiltration device with direct cell- and proteinfree sampling through a semipermeable membrane. Both the uric acid and creatinine permeabilities were strongly affected by the suspending phase composition, with the permeabilities in different buffer solutions varying by as much as a factor of three. The predominant factors affecting the permeability were the presence (or absence) of chloride, phosphate/adenine, and proteins, although the magnitude and even the direction of these effects were significantly different for creatinine and uric acid transport. The dramatic differences in behavior for uric acid and creatinine reflect the different transport mechanisms for these solutes, with uric acid transported by a carrier-mediated mechanism and creatinine transported by passive diffusion through the lipid bilayer. These results provide important insights into the effects of solution environment on cell membrane transport and other cell membrane-mediated properties. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Sterols are essential components of the plasma membrane in eukaryotic cells. Nystatin-resistant erg mutants were used in the present study to investigate the in vitro effects of altered sterol structure on membrane lipid composition, fluidity, and asymmetry of phospholipids. Quantitative analyses of the wild type and mutants erg2, erg3 and erg6 revealed that mutants have lower sterol (free)-to-phospholipid molar ratios than the wild type. Phosphatidylcholine content was decreased in erg2 and erg3 mutants; however, it was increased in erg6 strains as compared to normals. Phosphatidylserine content was increased in the erg6 mutant only. Fluorescence anisotropy decreased with temperature in both probes, and was lower for mutants than for the wild type, suggesting an increased freedom in rotational movement due to decreased membrane order. Investigation of changes in the aminophospholipid transbilayer distribution using two chemical probes, trinitrobenzene sulfonic acid and fluorescamine, revealed that the amounts of phosphatidylethanolamine derivatized by these probes were quite similar in both the wild type and various erg strains. The present findings suggest that adaptive responses in yeast cells with altered sterol structure are possibly manifested through changes in membrane lipid composition and fluidity, and not through transbilayer rearrangement of aminophospholipids.  相似文献   

13.
Chinese hamster cells in suspension were exposed to 20 kHz ultrasound (US) at 54 W/cm2 and various temperatures between 2 and 44 °C. Activation energies were 2.6 and 24 kcal/mole below and above 35 °C, respectively. Procaine, a local anaesthetic drug known to increase membrane fluidity, enhanced cellular inactivation by US above 41 °C, increasing the activation energy to 62 kcal/mole. The inactivation of the bacterium Salmonella typhimurium by US was also dependent on the exposure temperature, with an activation energy of 2.9 kcal/mole between 2 and 44 °C. These data are most simply explained by the hypothesis that membranes are a major target for cellular inactivation by US and that the fluidity of the membranes is important in this respect.  相似文献   

14.
RBCs (red blood cells) circulating through narrow blood capillaries withstand major deformation. The mechanical and chemical stresses commonly exerted on RBCs continue to attract interest for the study of membrane structure and function. Snake venoms are lethal biochemical 'cocktails' that often contain haemotoxins, metalloproteinases, myotoxins, neurotoxins, phosphodiesterases, phospholipases and proteases. We have monitored the effects of 4 snake venoms (Pseudechis guttatus, Oxyuranus scutellatus, Notechis scutatus and Naja kaouthia) on human RBCs using NMR spectroscopy, DIC (differential interference contrast) and confocal light microscopy. RBCs underwent reproducible stomatocytosis, with unusual geographical-like indentations, spherocytosis, followed by rapid lysis. Confocal micrographs using a fluorescent dye linked to phalloidin showed that the change in morphology was associated with the aggregation of actin in the cytoskeleton. (31)P NMR saturation transfer experiments recorded transport of the univalent anion HPA (hypophosphite) on a subsecond time scale, thereby reporting on the function of capnophorin or Band 3 linked to the cytoskeleton; anion-exchange activity was substantially reduced by venom treatment. We propose a molecular-cytological hypothesis for the shape and functional changes that is different from, or supplementary to, the more 'traditional' bilayer-couple hypothesis more often used to account for similar morphological changes invoked by other reagents.  相似文献   

15.
Summary Red blood cells of certain species of animals, such as dogs and cats, contain low potassium and high sodium, whereas the erythropoietic stem cells giving rise to these cells are of high potassium type. This paper examines the sequence of membrane transport changes during erythropoiesis by analyzing the K, Na and Fe in single bone marrow cells, reticulocytes and mature red blood cells with X-ray microanalysis. The relationship between K/Na ratios and Fe/(K+Na) ratios were examined by X-ray microanalysis. The K/Na ratios give a measure of the membrane cation transport function. The Fe/(K+Na), which is analogous to hemoglobin concentration, gives an index of maturation stage. The relationships between K/Na and Fe/(K+Na) in the marrow cells of normal adult dog and those of a phenylhydrazine-injected dog with accelerated erythropoiesis show that the modification of cation composition occurs after the initiation of hemoglobin synthesis but before its completion. Similar relationships in the reticulocytes obtained from phenylhydrazine-injected dogs as well as from newborn dogs show a consistent decrease in K/Na with increased Hb, indicating a drastic change in cation composition during the maturation of the reticulocytes. Therefore the modification in membrane transport function must have occurred before or during the formation of reticulocytes.  相似文献   

16.
A procedure is developed to calculate red blood cell and phospholipid vesicle shapes within the bilayer couple model of the membrane. The membrane is assumed to consist of two laterally incompressible leaflets which are in close contact but unconnected. Shapes are determined by minimizing the membrane bending energy at a given volume of a cell (V), given average membrane area (A) and given difference of the areas of two leaflets (A). Different classes of shapes exist in parts of the v/a phase diagram, where v and a are the volume and the leaflet area difference relative to the sphere with area A. The limiting shapes are composed of sections of spheres with only two values allowed for their radii. Two low energy axisymmetrical classes, which include discocyte and stomatocyte shapes are studied and their phase diagrams are analyzed. For v=0.6, the discocyte is the lowest energy shape, which transforms by decreasing a continuously into a stomatocyte. The spontaneous membrane curvature (C 0) and compressibility of membrane leaflest can be incorporated into the model.A model, where A is free and C 0 determines the shapes at given V and A, is also studied. In this case, by decreasing C 0, a discocyte transforms discontinuously into an almost closed stomatocyte.  相似文献   

17.
The purpose of this investigation was to correlate the viscoelastic properties and lipid fluidity of the red blood cell membrane to its lipid composition. The viscoelastic properties of human red cells that had been enriched or depleted in cholesterol were determined by the micropipette technique. The lipid fluidity of the outer and inner leaflets of the erythrocyte membrane was concurrently assessed by steady state fluorescence depolarization. The elastic modulus and the viscosity moduli of the erythrocyte membrane showed no significant differences between the cholesterol-modified and the control cells. Cholesterol enrichment decreased the lipid fluidity of the outer membrane leaflet alone, and cholesterol depletion increased the fluidity mainly of the inner leaflet.  相似文献   

18.
Erythrocyte membranes and their liposomes were prepared from clinically normal dogs and Labrador retrievers with hereditary muscular dystrophy. The static and dynamic components of fluidity of each membrane were then assessed by steady-state fluorescence polarization techniques using limiting hindered fluorescence anisotropy and order parameter values of 1,6-diphenyl-1,3,5-hexatriene (DPH) and fluorescence anisotropy values ofdl-2-(9-anthroyl)-stearic acid anddl-12-(9-anthroyl)-stearic acid, respectively. Membrane lipids were extracted and analyzed by thin-layer chromatography and gas chromatography. The results of these studies demonstrated that the lipid fluidity of erythrocyte membranes, and their liposomes, prepared from dystrophic dogs were found to possess significantly lower static and dynamic components of fluidity than control counterparts. Analysis of the composition of membranes from dystrophic dogs revealed a higher ratio of saturated fatty acyl chain/unsaturated chains (w/w) and lower double-bond index. Alterations in the fatty acid composition such as decrease in levels of linoleic (18:2) and arachidonic (20:4) acids and increase in palmitic (16:0) and stearic (18:0) acids were also observed in the membranes of dystrophic animals. These associated fatty acyl alterations could explain, at least in part, the differences in membrane fluidity between dystrophic and control dogs.  相似文献   

19.
Summary Static polarization and differential polarized phase fluorimetry studies on rat renal cortical brush border (BBM) and basolateral membranes (BLM) were undertaken to determine the membrane components responsible for differences in BBM and BLM fluidity, whether these differences were due to the order or dynamic components of membrane fluidity and if a fluidity gradient existed within the bilayer. Surface membrane proteins rigidified both BBM and BLM fluidity. Neutral lipid extraction, on the other hand, caused a larger decrease in BBM than BLM fluorescence polarization (0.104vs. 0.60,P<0.01) using diphenyl hexatriene (DPH). Cholesterol addition to phospholipid fractions restored membrane fluidity to total lipid values in both BBM and BLM phospholipids. The response to cholesterol in the BBM was biphasic, while the BLM response was linear. Lateral mobility, quantitated using dipyrenylpropane, was similar in both BBM and BLM fractions at 35°C. BBM and BLM differed primarily in the order component of membrane fluidity as DPH-limiting anisotropy (r ) (0.212vs. 0.154,P<0.01) differed markedly between the two membrane fractions. The two membrane components also differed with respect to 2 and 12-anthroyloxy stearate (2-AS, 12-AS) probes, indicating a difference in the dynamic component of membrane fluidity may also be present. DPH and 12-As probes were also used to quantitate inner core membrane fluidity and showed the BBM was less fluid than the BLM for intact membranes, total lipid extracts and phospholipids. Results obtained using the surface membrane probes trimethylammonium-DPH (TMA-DPH) and 2-AS suggested a fluidity gradient existed in both BBM and BLM bilayers with the inner core being more fluid in both membranes. These data indicate cholesterol is in large part responsible for fluidity differences between BBM and BLM and that these membranes, while clearly differing in the order component of membrane fluidity, may also difer in the dynamic component as well.  相似文献   

20.
The cytoplasmic resistivities and membrane breakdown potentials of normal (AA), sickle-cell-trait (AS), and sickle (SS) red blood cells have been measured by the biophysical methodology of resistive pulse spectroscopy over a range of osmolalities. At isotonicity, the average membrane breakdown potentials are virtually identical for the three types of cells occurring at about 1150 V/cm. Average isotonic cytoplasmic resistivities are somewhat higher for the SS cells (166.7±7.49 ohm-cm) compared to the AA (147.6±1.98 ohm-cm) or AS cells (148.7±1.79 ohm-cm). As medium osmolality is varied, the differences in resistive properties become enlarged, especially at very low and very high osmolalities. At high osmolalities, both types of sickle cells show a large increase in internal resistivity compared to the normals; at low osmolality, the SS samples exhibit a distinctly different membrane breakdown characteristic, decreasing in this parameter, whereas the other two groups increase. Of the 15 SS samples tested, three displayed much higher cytoplasmic resistivities at isotonicity: 218.2±5.25 ohm-cm, compared to an average of 153.5±3.46 ohm-cm for the other 12. The relationship between these high resistivities and the subfraction of irreversibly sickled cells in the sample is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号