首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Tolerance of the yeast Yarrowia lipolytica to oxidative stress   总被引:1,自引:0,他引:1  
The adaptive response of the yeast Yarrowia lipolytica to the oxidative stress induced by the oxidants hydrogen peroxide, menadione, and juglone has been studied. H2O2, menadione, and juglone completely inhibited yeast growth at concentrations higher than 120, 0.5, and 0.03 mM, respectively. The stationary-phase yeast cells were found to be more resistant to the oxidants than the exponential-phase cells. The 60-min pre-treatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.3 mM), menadione (0.05 mM), and juglone (0.005 mM) made the cells more resistant to high concentrations of these oxidants. The adaptation of yeast cells to H2O2, menadione, and juglone was associated with an increase in the activity of cellular catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase, the main enzymes involved in cell defense against oxidative stress.  相似文献   

4.
5.
The adaptive response of the yeast Yarrowia lipolytica to the oxidative stress induced by the oxidants hydrogen peroxide, menadione, and juglone has been studied. H2O2, menadione, and juglone completely inhibited yeast growth at concentrations higher than 120, 0.5, and 0.03 mM, respectively. The stationary-phase yeast cells were found to be more resistant to the oxidants than the exponential-phase cells. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.3 mM), menadione (0.05 mM), and juglone (0.005 mM) made the cells more resistant to high concentrations of these oxidants. The adaptation of yeast cells to H2O2, menadione, and juglone was associated with an increase in the activity of cellular catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase, the main enzymes involved in cell defense against oxidative stress.  相似文献   

6.
Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a cellular/organellar level are poorly understood. The genetic bases of cellular redox homeostasis were investigated using a green fluorescent protein (GFP) based redox probe, roGFP2 and a pH sensitive GFP-based probe, pHluorin. The use of roGFP2, in conjunction with pHluorin, enabled determination of pH-adjusted sub-cellular redox potential in a non-invasive and real-time manner. A genome-wide screen using both the non-essential and essential gene collections was carried out in Saccharomyces cerevisiae using cytosolic-roGFP2 to identify factors essential for maintenance of cytosolic redox state under steady-state conditions. 102 genes of diverse function were identified that are required for maintenance of cytosolic redox state. Mutations in these genes led to shifts in the half-cell glutathione redox potential by 75-10 mV. Interestingly, some specific oxidative stress-response processes were identified as over-represented in the data set. Further investigation of the role of oxidative stress-responsive systems in sub-cellular redox homeostasis was conducted using roGFP2 constructs targeted to the mitochondrial matrix and peroxisome and E(GSH) was measured in cells in exponential and stationary phase. Analyses allowed for the identification of key redox systems on a sub-cellular level and the identification of novel genes involved in the regulation of cellular redox homeostasis.  相似文献   

7.
The Saccharomyces cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Ye1047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1p and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.  相似文献   

8.
A set of homozygous diploid deletion mutants of the yeast Saccharomyces cerevisiae was screened for the genes required for tolerance to aliphatic alcohols. The screen identified 137, 122 and 48 deletion mutants sensitive to ethanol, 1-propanol and 1-pentanol, respectively. A number of the genes required for ethanol tolerance were those also required for tolerance to other alcohols. Numerous mutants with defective genes encoding for vacuolar H+ -ATPase (V-ATPase) were cosensitive to these alcohols. A global screening approach of yeast deletion library mutants was useful in elucidating the mechanisms of alcohol tolerance based on different lipophilicities.  相似文献   

9.
10.
Redox control and oxidative stress in yeast cells   总被引:1,自引:0,他引:1  
  相似文献   

11.
Peroxiredoxins are a family of abundant peroxidases found in all organisms. Although these antioxidant enzymes are thought to be critically involved in cellular defense and redox signaling, their exact physiological roles are largely unknown. In this study, we took a genetic approach to address the functions of peroxiredoxins in budding yeast. We generated and characterized a yeast mutant lacking all five peroxiredoxins. The quintuple peroxiredoxin-null mutant was still viable, though the growth rate was lower under normal aerobic conditions. Although peroxiredoxins are not essential for cell viability, peroxiredoxin-null yeast cells were more susceptible to oxidative and nitrosative stress. In the complete absence of peroxiredoxins, the expression of other antioxidant proteins including glutathione peroxidase and glutathione reductase was induced. In addition, the quintuple mutant was hypersensitive to glutathione depletion. Thus, the glutathione system might cooperate with other antioxidant enzymes to compensate for peroxiredoxin deficiency. Interestingly, the peroxiredoxinnull yeast cells displayed an increased rate of spontaneous mutations that conferred resistance to canavanine. This mutator phenotype was rescued by yeast peroxiredoxin Tsa1p, but not by its active-site mutant defective for peroxidase activity. Our findings suggest that the antioxidant function of peroxiredoxins is important for maintaining genome stability in eukaryotic cells.  相似文献   

12.
Eukaryotic cells have developed mechanisms to rapidly respond towards the environment by changing the expression of a series of genes. There is increasing evidence that reactive oxygen species (ROS), besides causing damage, may also fulfill an important role as second messengers involved in signal transduction. Recently, we have demonstrated that deletion of SOD1 is beneficial for the acquisition of tolerance towards heat and ethanol stresses. The present report demonstrates that a sod1 mutant was the only one capable of acquiring tolerance against a subsequent stress produced by menadione, although this mutant strain had exhibited high sensitivity to oxidative stress. By measuring the level of intracellular oxidation, lipid peroxidation as well as glutathione metabolism, we have shown that in the SOD1-deleted strain, an unbalance occurs in the cell redox status. These results indicated that the capacity of acquiring tolerance to oxidative stress is related to a signal given by one or all of the above factors.  相似文献   

13.
AIM: The purpose of this study was to investigate the effect of oxidative stress on physiological and genetic characteristics of Fusobacterium nucleatum and its interference on this microbial identification methods. METHODS AND RESULTS: Fus. nucleatum ssp. nucleatum ATCC 25586 (wt-strain) and an oxidative-stress-adapted strain derived from the wt-strain (aero-strain) were employed in the study. Cell-free crude protein extracts were obtained from both strains and differentially expressed proteins were identified by two-dimensional electrophoresis. Bacterium identification was performed by conventional biochemical tests, automated Rapid ID 32A system and specific PCR analysis. Genetic diversity between wt- and aero-strain was assessed by arbitrarily-primed (AP)-PCR. There were significant changes in the protein profile of aero-strain. The identification of the wt-strain was confirmed by all methods employed. Similar results were obtained for aero-strain when conventional biochemical tests and PCR were used. However, aero-strain was identified as Fusobacterium varium when submitted to Rapid ID 32A system. According to AP-PCR analysis, no significant genetic alteration was detected in aero-strain. CONCLUSIONS: The adaptive response of Fus. nucleatum to oxidative stress is associated with changes on its biology, which may lead to misidentification of the organism, according to the conventional identification methods. SIGNIFICANCE AND IMPACT OF THE STUDY: Oxidative stress may act as a cause of adaptive response in Fus. nucleatum with consequences to its biology, such as alterations on biochemical and physiological profile.  相似文献   

14.
15.
To create a conditional system for molecular analysis of effects of polyunsaturated fatty acids (PUFA) on cellular physiology, we have constructed a strain of yeast (Saccharomyces cerevisiae) that functionally expresses, under defined conditions, the Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This strain produces up to 15% PUFA, exclusively under inducing conditions resulting in production of 4-hydroxy-2-nonenal, one of the major end products of n-6 polyunsaturated fatty acid peroxidation. The PUFA-producing yeast was initially more sensitive to oxidative stress than the wild-type strain. However, over extended time of cultivation it became more resistant to hydrogen peroxide indicating adaptation to endogenous oxidative stress caused by the presence of PUFA. Indeed, PUFA-producing strain showed an increased concentration of endogenous ROS, while initially increased hydrogen peroxide sensitivity was followed by an increase in catalase activity and adaptation to oxidative stress. The deletion mutants constructed to be defective in the catalase activity lost the ability to adapt to oxidative stress. These data demonstrate that the cellular synthesis of PUFA induces endogenous oxidative stress which is overcome by cellular adaptation based on the catalase activity.  相似文献   

16.
17.
Oxidative stress and protein carbonylation is implicated in aging and various diseases such as neurodegenerative disorders, diabetes, and cancer. Therefore, the accurate identification and quantification of protein carbonylation may lead to the discovery of new biomarkers. We have developed a new method that combines avidin affinity selection of carbonylated proteins with iTRAQ labeling and LC fractionation of intact proteins. This simple LC-based workflow is an effective technique to reduce sample complexity, minimize technical variation, and enable simultaneous quantification of four samples. This method was used to determine protein oxidation in an iron accumulating mutant of Saccharomyces cerevisiae exposed to oxidative stress. Overall, 31 proteins were identified with 99% peptide confidence, and of those, 27 proteins were quantified. Most of the identified proteins were associated with energy metabolism (32.3%), and cellular defense, transport, and folding (38.7%), suggesting a drop in energy production and reducing power of the cells due to the damage of glycolytic enzymes and decrease in activity of enzymes involved in protein protection and regeneration. In addition, the oxidation sites of seven proteins were identified and their estimated position also indicated a potential impact on the enzymatic activities. Predicted 3D structures of peroxiredoxin (TSA1) and thioredoxin II (TRX2) revealed close proximity of all oxidized amino acid residues to the protein active sites.  相似文献   

18.
The effect of oxidative stress on riboflavin (vitamin B2) biosynthesis and iron accumulation in flavinogenic yeast P. guilliermondii was investigated. Treatment of P. guilliermondii cells with superoxidgenerating agent methylviologen leads to elevated production of malondialdyhyd (MDA) which reflects the overall cellular oxidation state. Increased iron content in the cells and enhanced productivity of flavinogenesis under these conditions has been shown too. Significant increasing of MDA and riboflavin production by yeast cells under iron deficiency was observed. Riboflavin overproducing P. guilliermondii mutant strains rib80, rib81 and hit, possess high iron transport and synthesize increased quantity of MDA. The role of riboflavin overproduction and activation of iron assimilation in the P. guilliermondii antioxidant defence is discussed.  相似文献   

19.
Friedreich ataxia (FRDA) is a common form of ataxia caused by decreased expression of the mitochondrial protein frataxin. Oxidative damage of mitochondria is thought to play a key role in the pathogenesis of the disease. Therefore, a possible therapeutic strategy should be directed to an antioxidant protection against mitochondrial damage. Indeed, treatment of FRDA patients with the antioxidant idebenone has been shown to improve neurological functions. The yeast frataxin knock-out model of the disease shows mitochondrial iron accumulation, iron-sulfur cluster defects and high sensitivity to oxidative stress. By flow cytometry analysis we studied reactive oxygen species (ROS) production of yeast frataxin mutant cells treated with two antioxidants, N-acetyl-L-cysteine and a mitochondrially-targeted analog of vitamin E, confirming that mitochondria are the main site of ROS production in this model. Furthermore we found a significant reduction of ROS production and a decrease in the mitochondrial mass in mutant cells treated with rapamycin, an inhibitor of TOR kinases, most likely due to autophagy of damaged mitochondria.  相似文献   

20.
Eukaryotic protein kinases are key molecules mediating signal transduction that play a pivotal role in the regulation of various biological processes, including cell cycle progression, cellular morphogenesis, development, and cellular response to environmental changes. A total of 106 eukaryotic protein kinase catalytic-domain-containing proteins have been found in the entire fission yeast genome, 44% (or 64%) of which possess orthologues (or nearest homologues) in humans, based on sequence similarity within catalytic domains. Systematic deletion analysis of all putative protein kinase-encoding genes have revealed that 17 out of 106 were essential for viability, including three previously uncharacterized putative protein kinases. Although the remaining 89 protein kinase mutants were able to form colonies under optimal growth conditions, 46% of the mutants exhibited hypersensitivity to at least 1 of the 17 different stress factors tested. Phenotypic assessment of these mutants allowed us to arrange kinases into functional groups. Based on the results of this assay, we propose also the existence of four major signaling pathways that are involved in the response to 17 stresses tested. Microarray analysis demonstrated a significant correlation between the expression signature and growth phenotype of kinase mutants tested. Our complete microarray data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/kinome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号