首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Total endosperm proteins extracted from both several common wheat cultivars and some intervarietal substitution lines derived from them were fractionated according to their molecular weight in a high resolution one-dimensional gel electrophoresis. The four donor cultivars and the recipient one — Chinese Spring, possessed differentially migrating protein bands in the fractions of high molecular weight (HMW) glutenins and gliadins. Several of these bands were identified for the first time in this study. By utilizing intervarietal substitution lines the control of the HMW glutenins and gliadins by chromosomes of homoeologous group 1 was either reaffirmed or, for the new bands, established. Several HMW gliadin subunits showed a considerable variation in their staining intensity in the intervarietal substitution lines indicating that their expression was dependent on the genetic background.This paper is based on a portion of a dissertation to be submitted by G. Galili in partial fulfilment of the Ph.D. requirements of the Feinberg Graduate School, The Weizmann Institute of Science, RehovotThe Marshall and Edith Korshak Professor of Plant Cytogenetics  相似文献   

2.
Summary Electrophoretic profiles of crude protein extracts from seed of F1 hybrids and reciprocal crosses among diploid, tetraploid and hexaploid wheats were compared with those of their respective parental species. The electrophoretic patterns within each of three pairs of reciprocal crosses, T.boeoticum X T.urartu, T.monococcun X T. urartu and T.dicoccum X T. araraticum, were different from one another but were identical with those of their respective maternal parents. Protein bands characteristic of the paternal parents were missing in F1 hybrid seed suggesting that the major seed proteins in wheat were presumably regulated by genotype of the maternal parent rather than by the seed genotype. However, in another three pairs of reciprocal crosses, T.boeoticum X T. durum, T.dicoccum X T.aestivum and T. zhukovskyi x T. aestivum, protein bands attributable to the paternal parents were present in the F1 hybrid seeds indicating that the seed proteins were not always exclusively regulated by the maternal genotype. The expression of paternal genomes is presumably determined by dosage and genetic affinity of the maternal and paternal genomes in the hybrid endosperm. The maternal regulation of seed protein content is probably accomplished through the maternal control over seed size. The seed protein quality may, however, depend upon the extent of expression of the paternal genome.  相似文献   

3.
Gliadin and glutenin electrophoresis of F2 progeny from four crosses of durum wheat was used to analyse the linkage relationships between prolamin genes on chromosomes 1A and 1B. The results showed that these genes are located at the homoeoallelic lociGlu-1,Gli-3,Glu-3 andGli-1. The genetic distances between these loci were calculated more precisely than had been done previously for chromosome 1B, and the genetic distances betweenGli-A3,Glu-A3 andGli-A1 on chromosome 1A were also determined. Genes atGli-B3 were found to control some-gliadins and one B-LMW glutenin, indicating that it could be a complex locus.  相似文献   

4.
The maximum rate and duration for grain dry matter (DM) and nitrogen (N) accumulation were evaluated in 194 recombinant inbred lines (RILs) from a cross between the two French wheat cultivars Récital and Renan. These cultivars were previously identified as having contrasting kinetics of grain DM and N accumulation. Grain protein composition was analysed by capillary electrophoresis (CE), which enabled quantification of the different storage protein fractions (-gliadins, -gliadins, LMW glutenins, HMW glutenins, and each of their subunits). Correlation analyses revealed that DM and N accumulation rates were closely correlated and repeatable over several years, which was not the case for DM and N accumulation durations, and that protein composition was primarily influenced by the N accumulation rate. This was particularly true for the LMW-glutenins and the -gliadins, the most abundant protein fractions. A genetic map of 254 molecular markers covering nearly 80% of the wheat genome was used for quantitative trait loci (QTL) analysis. A total of seven QTLs were found. Five QTLs were significantly associated with the kinetics of DM and N accumulation, and two of them also influenced protein composition. Two QTLs affected only the protein composition. One major QTL explained more than 70% of the total variation in HMW-GS Glu1B-x content.  相似文献   

5.
Wheat storage proteins were evaluated by SDS-PAGE in a population of 206 doubled haploid (DH) lines, produced from a cross between bread wheat cvs Chinese Spring (CS) and Courtot (CT). The analysis of gliadins and high- and low-molecular-weight glutenins gave rise to 11 protein markers between parental varieties. Among these, one each was encoded at the Glu-A1, Gli-A1, Gli-A2, Gli-A5, Glu-B3, Gli-B1 and Gli-D1 loci and four were encoded at the Glu-D3 locus. Only the Gli-A2 marker showed a distorted segregation. A distance of 1.94 cM was evaluated between the Gli-A1 locus and the recently found Gli-A5 locus. Among the DH lines, only nine exhibited an unexpected pattern. The chromosome allocation was determined for almost all the LMW-GS and gliadin bands of CS using nullitetrasomic and ditelosomic lines. Two C LMW-GS were found to be coded by 6DS. Similarly, substitution lines into CT allowed the allelic determination of numerous LMW-GS and gliadin bands. A correspondence between gliadin markers separated in SDS-PAGE and in A-PAGE revealed that the common allele Gli-Aa between CS and CT determined in A-PAGE was able to be separated into two alleles when SDS-PAGE was used.  相似文献   

6.
Summary Genes coding for glutenin-like subunits and for several prolamin subunits with electrophoretic mobilities (lactate-PAGE) corresponding to those of omega- and gamma-gliadins of wheat were located inDasypyrum villosum chromosome1V. Genes controlling four gliadinlike subunits with electrophoretic mobilities corresponding to those of alpha- and gamma-gliadins were located on the short arm of chromosome6V and on the long arm of chromosome4V. N-terminal amino acid sequences of these four components were also determined and homology with alpha-type gliadins was demonstrated. The presence of genes coding for glutenin- and gliadin-like subunits on chromosomes1V and6V demonstrates homoeology between theD. villosum chromosomes1V and6V and the chromosomes of homoeologous groups 1 and 6 in wheat. It is likely that the additional locusGli-V3 on chromosome4V originated by translocation from theGli-V2 locus.  相似文献   

7.
Summary The zymogram phenotypes of glucose-phosphate isomerase (GPI), alcohol dehydrogenase-1 (ADH-1), glutamate oxaloacetate transaminase (GOT), superoxide dismutase (SOD), lipoxygenase (LPX), esterase (EST) and the banding patterns of gliadin and glutenin seed storage proteins were determined for Triticum aestivum cv. Chinese Spring (CS), Dasypyrum villosum, the octoploid amphiploid T. aestivum cv. Chinese Spring D. villosum (CS × v) (2n=8x=56; AABBDDVV), and for five CS-D. villosum disomic addition lines. The genes Gpi-V1, Adh-V1, Got-V2, and Sod-V2 coding for GPI-1, ADH-1, GOT-2, and SOD-2 isozymes were located in D. villosum on chromosome 1V, 4V, 6V, and 7V, respectively. Genes coding for gliadin- and glutenin-like subunits are located in D. villosum chromosomes 1V. There are no direct evidence for chromosomal location of genes coding for GOT-3, EST-1 and LPX-2 isozymes. The linkage between genes coding for glutenin-like proteins and GPI-1 isozymes in chromosome 1V is evidence of homoeology between chromosome 1V and the chromosomes of homoeologous group 1 in wheat.Research supported by the National Research Council (Italy) and National Science Foundation (USA). International cooperative project, Grant No. 85.01504.06 (CNR)  相似文献   

8.
Linkage mapping of genes controlling endosperm storage proteins in wheat   总被引:15,自引:0,他引:15  
Summary A translocation mapping procedure was used to map gene-centromere distances for the genes controlling endosperm proteins on the short arm of each of the chromosomes 1A, 1B and 1D in wheat. The genes controlling triplet proteins (tentatively designated Tri-1) were found to be closely linked to the centromere on chromosome arms 1AS and 1DS and loosely linked to the gliadin genes (Gli-1) on the same arms. The Gli-1 genes segregated independently or were very loosely linked to their respective centromeres. The Gli-B1-centromere map distance on 1BS was also estimated using conventional telocentric mapping and the result was similar to that obtained with the translocation mapping. A simple two-step one-dimensional electrophoretic procedure is described which allows the low-molecular-weight (LMW) glutenin subunits to be separated from the gliadin bands, thus facilitating the genetic analysis of these LMW subunits. No recombination was observed between the genes (designated Glu-3) controlling some major LMW glutenin subunits and those controlling gliadins on chromosome arms 1AS and 1DS. However, in a separate experiment, the genes controlling LMW glutenin subunits on 1BS (Glu-B3) showed a low frequency of recombination with the gliadin genes.Portion of the Ph.D. thesis submitted by the senior author  相似文献   

9.
Summary The patterns of chloroplastic and cytosolic isoenzymes of triosephosphate isomerase were analysed by immunoblotting in leaves of rye, wheat, and some species of Aegilops or Agropyrum. While rye contained solely one chloroplastic and one cytosolic isoenzyme, wheat had a much more complex pattern which can be explained by the presence of three genomes in 6 x wheats (AABBDD) with distinct triosephosphate isomerase genes that provided different subunit species for the dimeric isoenzyme molecules. The 6 × wheats contained five, the 4 × wheats three, and the 2 × wheats only one chloroplastic isoenzyme band. The isoenzyme patterns were in accordance with a potential origin of one of the three chloroplastic triosephosphate isomerase genes of 6 × wheats from an Aegilops ancestor. The descent of the other two genes was, however, not in accordance with common contentions on the general evolution of cultural wheats. In the reciprocal intergeneric hybrids Secalotricum and Triticale both the chloroplastic and the cytosolic isoenzyme patterns of rye and wheat were biparentally inherited, indicating that both isoenzymes were controlled by nuclear genes. When monitored by immunoblotting the chloroplastic triosephosphate isomerase isoenzymes may provide useful genetic markers.  相似文献   

10.
Developmental changes in the metabolic protein profiles of wheat endosperm   总被引:14,自引:0,他引:14  
  相似文献   

11.
Summary Blocks of gliadin components found both in a number of varieties and in single F2 grains of winter wheat intervarietal hybrids have been studied by two-dimensional electrophoresis combining electrophoresis in acidic aluminium-lactate buffer (pH3.1) and SDS-electrophoresis. Gliadin components (spots) have been shown to be inherited as linked groups (blocks), codominantly and in accordance with a gene dosage in triploid endosperm. Blocks include components differing in their electrophoretic mobility and molecular weight. Some allelic variants of blocks differ only in presence of few additional components or in the electrophoretic mobility of components with similar molecular weights; other variants may contain no similar components. Apparently, in the course of evolution, mutations in individual genes of gliadin-coding loci and processes changing the number of expressing genes and the sizes of their structural part occurred.  相似文献   

12.
Summary Using C-banding it has been possible to prove that the bread wheat varieties Holdfast and CapelleDesprez shows an intense band of telomeric heterochromatin on the short arm of chromosome 1B, while the variety Pané-247 presents a very thin band. Gliadin study using pH-acid electrophoresis revealed the existence of differences in the Gli-B1 locus in the three varieties. Analysis of the progeny of the (P x H) x CD hybrid revealed recombination between the heterochromatin C-band and locus Gli-B1, and allowed the genetic distance between the two markers to be calculated as 6.55±3.16 cMorgan. This is the first time the genetic distance from a locus to the chromosome telomere has been directly obtained in wheat. The heterochromatin C-band studied here gives us a cytological marker on chromosome 1B that can be used as a reference point in the localization of other genes.  相似文献   

13.
Summary The seed proteins of Chinese Spring wheat stocks which possess single chromosomes from other plant species related to wheat have been separated by gel electrophoresis in the presence of sodium dodecyl sulphate. Marker protein bands have been detected for both arms of barley chromosome 5, chromosome E (= 1R) and B (= 2R) of rye, chromosomes A,B (= 1Cu) and C (= 5Cu) of Aegilops umbellulata and chromosomes I and III of Agropyron elongatum. These studies, and previous findings, indicate that chromosome 5 of barley, chromosome 1R of rye, chromosome I of Ag. elongatum and possibly chromosome 1Cu of Ae. umbellulata are similar to chromosomes 1A, 1B and 1D in hexaploid wheat in that they carry genes controlling prolamins on their short arms and genes controlling high-molecular-weight (apparent molecular weight greater than 86,000) seed protein species on their long arms. These findings support the idea that all these chromosomes are derived from a common ancestral chromosome and that they have maintained their integrity since their derivation from that ancestral chromosome.  相似文献   

14.
An antiserum to subunit 2 from the high-molecular-weight (HMW) subunits of the glutenin fraction of Triticum aestivum cv. Highbury was shown to react with related subunits from other cultivars of wheat. The reaction was measured quantitatively by laser nephelometry in polyethylene glycol phosphate-buffered saline after dissolving the HMW fraction in 0.1 M acetic acid; urea used to dissolve the HMW prolamins inhibited the reaction, in some cases at the low concentration of 0.06 M. A study of the comparative reactions of other cereal prolamins was made. D hordein, the homologous HMW protein of barley, showed less reaction, which was more inhibited by urea than the wheat subunits. Some -gliadins from the wheat cultivars Chinese Spring and Cheyenne reacted more strongly than the injected fraction and there was less inhibition by urea. A-, - and 3 of wheat also reacted with the antiserum while a secalin of rye of Mr 40000 gave a weak reaction.Abbreviations HMW high molecular weight - PAGE polyacrylamide-gel electrophoresis - PBS phosphate-buffered saline - PE pyridylethylated - SDS sodium dodecyl sulphate  相似文献   

15.
Genetic aspects of wheat gliadin proteins   总被引:8,自引:0,他引:8  
Inheritance of gliadin components unique to three different varieties of common wheat (Triticum aestivum L.) was studied in F1 and F2 seeds of intervarietal crosses using protein patterns obtained by polyacrylamide gel electrophoresis in aluminum lactate buffer (pH 3.2). The patterns of F1 seeds of the crosses Cheyenne × Justin and INIA 66R × Justin evidenced all the bands present in the patterns of the parents; band intensities reflected gene dosage levels dependent on whether the contributing parent was maternal or paternal in accordance with the triploid nature of endosperm tissue. Most of the gliadin components examined segregated in accordance with control by a single dominant gene, but in two instances single bands in the one-dimensional electrophoretic patterns segregated in the F2 as expected if controlled by two genes. A method of two-dimensional electrophoresis was developed that resolved these apparently single bands into two components each, which could segregate independently. Linkage analysis provided evidence of codominant alleles and closely linked genes coding for gliadin protein components in both coupling and repulsion situations. The gliadin protein components seem to be coded for by clusters of genes located on chromosomes of homoeologous groups 1 and 6 in hexaploid wheats.Reference to a company or product name does not imply approval by the U.S. Department of Agriculture to the exclusion of others which may also be suitable.  相似文献   

16.
17.
Summary The storage proteins of the endosperm of wheat grain which are known to be controlled by genes on the short arms of the homoeologous group 1 chromosomes are (1) the -gliadins, (2) most of the -gliadins, (3) a few -gliadins and (4) the major lowmolecular-weight subunits of glutenin. Several crosses were made between varieties or genetic lines which had contrasting allelic variants for some of these proteins and which were coded by genes on chromosomes 1A or 1B. The progeny were analysed by one or more of several electrophoretic procedures. The results of all the analyses are consistent with the hypothesis that chromosomes 1A and 1B each contain just one, complex locus, named Gli-A 1 and Gli-B 1 respectively, which contain the genes for the -, - and -gliadins and the low-molecular-weight subunits of glutenin.  相似文献   

18.
Early cellularization of the free-nuclear endosperm and subsequent differentation of the aleurone cells in the ventral region of the developing wheatgrain (Triticumaestivum L. cv. Heron) were examined using both light and electron microscopy. In ovules harvested 1 d after anthesis, irregular wall ingroths typical of transfer cells protrude into the multinucleate cytoplasm. Initital cellularization occurs by a process of free wall formation in much the same fashion as in the dorsal region of the grain. In places, sheets of endoplasmic reticulum and dictyosomes appear to be closely associated with the growing wall. Like the wall ingrowths noted earlier, the freely growing walls are intensely fluorescent after staining with aniline blue. Initiatal cellularization is complete 2–3 days after anthesis. Unlike the first-formed cells in the dorsal region of the developing grain, those in the ventral region are not meristematic. These amitotic cells become the groove aleurone cells which at an early stage of development are set apart from the rest of the endosperm by their irregularly thickened walls and dense cytoplasm. Autofluorescence is first apparent in the walls of those cells next to the degenerating nucellus. In contrast to the aleurone cells in the dorsal region of the grain, at maturity only the inner wall layer of each of the groove aleurone cells remains autofluorescent. The aleurone grains are highly variable in appearance and contain no Type II inclusions.  相似文献   

19.
B. Surek  A. Heilbronn  A. Austen  E. Latzko 《Planta》1985,165(4):507-512
Homogeneous phosphoribulokinase (PRK; ATP: d-ribulose-5-phosphate 1-phosphotransferase, EC 2.7.1.19) was isolated from wheat leaves with a specific activity of 15 kat mg-1 protein. The purification included ammonium sulfate cuts, isoelectric precipitation, and hydrophobic and affinity chromatography on pentylagarose and Blue Sepharose CL 6B, respectively. Gel filtration of the purified enzyme yielded a 83000 Da protein. Subunits of about 42000 Da were estimated from sodium dodecyl sulfate-polyacrylamide gels. Wheat leaf PRK was stable for at least four weeks when stored at 4°C. Saturation curves for ribulose 5-phosphate (Ru5P) and ATP followed Michaelis-Menten kinetics (K m values: K m Ru5P=50–80 M; K m ATP=70 M). The saturation curve for MgCl2 was sigmoidal (half-maximal velocity <0.5 mM). The affinity for Ru5P, ATP and Mg2+ was not affected by pH changes comparable to pH shifts in the stroma. In contrast to chloroplast fructose-bisphosphatase (Zimmermann et al. 1976, Eur. J. Biochem. 70, 361–367) the affinity for ligands remained unchanged in the dithiothreitol-activated and in the non-activated state. The activity of PRK was increasingly sensitive to inhibition by 3-phosphoglyceric acid with decreasing pH below pH 8.0.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - PRK phosphoribulokinase - Ru5P ribulose-5-phosphate - SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis  相似文献   

20.
Effect of light on the nucleotide composition of rRNA of wheat seedlings   总被引:1,自引:0,他引:1  
Ilona Rácz  I. Király  D. Lásztily 《Planta》1978,142(3):263-267
Both qualitative and quantitative differences in the minor nucleotide constituents of rRNA from normally grown and from etiolated wheat plants (Triticum aestivum L.) were established. Using different degradation methods and separation techniques the 18S+26S RNA of 8-day-old wheat seedlings grown in the light was found to contain 5-methylcytidine, 3-methylcytidine, 5-methyluridine, 3-methyluridine, 5-carboxymethyluridine, 1-methyladenine, N-methyladenine, 5-hydroxymethylcytidine, O2-methyluridine, O2-methylcytidine, pseudouridine, O2-methylpseudouridine, N2,N2-dimethylguanine, 1-methylguanine, ribothymidine and some unknown minor constituents. On the other hand, there were only a few minor nucleotides in the rRNA of etiolated wheat seedlings. Cycloheximide, a cytoplasmic protein synthesis inhibitor, simulated etiolation in that it reduced the number of minor nucleotides in rRNA, whereas chloramphenicol, a chloroplast protein synthesis inhibitor, had no significant effect on the minor nucleotide content of rRNA. This finding suggests that illumination may cause de novo synthesis of cytoplasmic modifying enzymes leading to the formation of highly modified rRNAs.Abbreviations m6A N6-methyladenine - m1A 1-methyladenine - 5hmc 5-hydroxymethylcytidine - Cm O2-methylcytidine - m5C 5-methylcytidine - m3C 3-methylcytidine - m1G 1-methylguanine - m 2 2 G N2, N2-dimethylguanine - pseudouridine - m O2-methylpseudouridine - Um O2-methyluridine - m3U 3-methyluridine - m5U 5-methyluridine - cm5U 5-carboxymethyluridine - rT ribothymidine - Pur purine - Pyr pyrimidine - RNase ribonuclease - UV ultra violet - p phosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号