首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
alpha-Synuclein is one of the major components of intracellular fibrillary aggregates in the brains of a subset of neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and Hallervorden-Spatz disease, which are referred to as alpha-synucleinopathies. We have shown previously (Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., Shen, J., Takio, K., and Iwatsubo, T. (2002) Nat. Cell Biol. 4, 160-164) that alpha-synuclein deposited in synucleinopathy brains is extensively phosphorylated at Ser-129 and migrates at 15 kDa. Here we examined the biochemical characteristics of the additional, higher molecular mass species of phosphorylated alpha-synuclein-positive polypeptides that also are recovered in the Sarkosyl-insoluble fraction of synucleinopathy and migrate at about 22 and 29 kDa. These 22 and 29 kDa bands were positive for three different anti-ubiquitin antibodies and comigrated perfectly with in vitro ubiquitinated alpha-synuclein that may correspond to mono- and diubiquitinated alpha-synuclein, respectively. Furthermore, cyanogen bromide cleavage of the 22 and 29 kDa polypeptides shifted the mobility to 19 and 26 kDa, respectively, and they retained immunoreactivity for both ubiquitin and alpha-synuclein. Finally, protein sequence analysis showed that the 19 kDa band contained two amino-terminal sequences of alpha-synuclein and ubiquitin. These results strongly suggest that phosphorylated alpha-synuclein is targeted to mono- and diubiquitination in synucleinopathy brains, which may have implications for mechanisms of these diseases.  相似文献   

2.
A comprehensive, unbiased inventory of synuclein forms present in Lewy bodies from patients with dementia with Lewy bodies was carried out using two-dimensional immunoblot analysis, novel sandwich enzyme-linked immunosorbent assays with modification-specific synuclein antibodies, and mass spectroscopy. The predominant modification of alpha-synuclein in Lewy bodies is a single phosphorylation at Ser-129. In addition, there is a set of characteristic modifications that are present to a lesser extent, including ubiquitination at Lys residues 12, 21, and 23 and specific truncations at Asp-115, Asp-119, Asn-122, Tyr-133, and Asp-135. No other modifications are detectable by tandem mass spectrometry mapping, except for a ubiquitous N-terminal acetylation. Small amounts of Ser-129 phosphorylated and Asp-119-truncated alpha-synuclein are present in the soluble fraction of both normal and disease brains, suggesting that these Lewy body-associated forms are produced during normal metabolism of alpha-synuclein. In contrast, ubiquitination is only detected in Lewy bodies and is primarily present on phosphorylated synuclein; it therefore likely occurs after phosphorylated synuclein has deposited into Lewy bodies. This invariant pattern of specific phosphorylation, truncation, and ubiquitination is also present in the detergent-insoluble fraction of brain from patients with familial Parkinson's disease (synuclein A53T mutation) as well as multiple system atrophy, suggesting a common pathogenic pathway for both genetic and sporadic Lewy body diseases. These observations are most consistent with a model in which preferential accumulation of normally produced Ser-129 phosphorylated alpha-synuclein is the key event responsible for the formation of Lewy bodies in various Lewy body diseases.  相似文献   

3.
Although α-synuclein (α-syn) phosphorylation has been considered as a hallmark of sporadic and familial Parkinson disease (PD), little is known about the effect of PD-linked mutations on α-syn phosphorylation. In this study, we investigated the effects of the A30P, E46K, and A53T PD-linked mutations on α-syn phosphorylation at residues Ser-87 and Ser-129. Although the A30P and A53T mutants slightly affected Ser(P)-129 levels compared with WT α-syn, the E46K mutation significantly enhanced Ser-129 phosphorylation in yeast and mammalian cell lines. This effect was not due to the E46K mutant being a better kinase substrate nor due to alterations in endogenous kinase levels, but was mostly linked with enhanced nuclear and endoplasmic reticulum accumulation. Importantly, lentivirus-mediated overexpression in mice also showed enhanced Ser-129 phosphorylation of the E46K mutant compared to WT α-syn, thus providing in vivo validation of our findings. Altogether, our findings suggest that the different PD-linked mutations may contribute to PD pathogenesis via different mechanisms.  相似文献   

4.
5.
Post-translational modification of histones is a central aspect of gene regulation. Emerging data indicate that modification at one site can influence modification of a second site. As one example, histone H3 phosphorylation at serine 10 (Ser(10)) facilitates acetylation of lysine 14 (Lys(14)) by Gcn5 in vitro (, ). In vivo, phosphorylation of H3 precedes acetylation at certain promoters. Whether H3 phosphorylation globally affects acetylation, or whether it affects all acetylation sites in H3 equally, is not known. We have taken a genetic approach to this question by mutating Ser(10) in H3 to fix either a negative or a neutral charge at this position, followed by analysis of the acetylation states of the mutant histones using site-specific antibodies. Surprisingly, we find that conversion of Ser(10) to glutamate (S10E) or aspartate (S10D) causes almost complete loss of H3 acetylation at lysine 9 (Lys(9)) in vivo. Acetylation of Lys(9) is also significantly reduced in cells bearing mutations in the Glc7 phosphatase that increase H3 phosphorylation levels. Mutation of Ser(10) in H3 and the concomitant loss of Lys(9) acetylation has minimal effects on expression of a Gcn5-dependent reporter gene. However, synergistic growth defects are observed upon loss of GCN5 in cells bearing H3 Ser(10) mutations that are reminiscent of delays in G(2)/M progression caused by combined loss of GCN5 and acetylation site mutations. Together these results demonstrate that H3 phosphorylation directly causes site-specific and opposite changes in acetylation levels of two residues within this histone, Lys(9) and Lys(14), and they highlight the importance of these histone modifications to normal cell functions.  相似文献   

6.
In the healthy brain, less than 5% of α-synuclein (α-syn) is phosphorylated at serine 129 (Ser(P)-129). However, within Parkinson disease (PD) Lewy bodies, 89% of α-syn is Ser(P)-129. The effects of Ser(P)-129 modification on α-syn distribution and solubility are poorly understood. As α-syn normally exists in both membrane-bound and cytosolic compartments, we examined the binding and dissociation of Ser(P)-129 α-syn and analyzed the effects of manipulating Ser(P)-129 levels on α-syn membrane interactions using synaptosomal membranes and neural precursor cells from α-syn-deficient mice or transgenic mice expressing human α-syn. We first evaluated the recovery of the Ser(P)-129 epitope following either α-syn membrane binding or dissociation. We demonstrate a rapid turnover of Ser(P)-129 during both binding to and dissociation from synaptic membranes. Although the membrane binding of WT α-syn was insensitive to modulation of Ser(P)-129 levels by multiple strategies (the use of phosphomimic S129D and nonphosphorylated S129A α-syn mutants; by enzymatic dephosphorylation of Ser(P)-129 or proteasome inhibitor-induced elevation in Ser(P)-129; or by inhibition or stable overexpression of PLK2), PD mutant Ser(P)-129 α-syn showed a preferential membrane association compared with WT Ser(P)-129 α-syn. Collectively, these data suggest that phosphorylation at Ser-129 is dynamic and that the subcellular distribution of α-syn bearing PD-linked mutations, A30P or A53T, is influenced by the phosphorylation state of Ser-129.  相似文献   

7.
Saccharomyces cerevisiae iso-1-cytochrome c was conjugated with ubiquitin (Ub) in vitro in a rabbit reticulocyte extract (Fraction II). By N-terminal protein sequencing, it was found for both the mono- and diubiquitinated products that the major Ub attachment site is on Lys4 (residue 9) of the cytochrome c. Thus, the residue ubiquitinated in iso-1-cytochrome c is identical with that previously determined for the yeast iso-2 form (Sokolik, C. W., and Cohen, R. E. (1991) J. Biol. Chem. 266, 9100-9107). For both cytochromes c, the proportions of diubiquitinated and higher order conjugates are drastically reduced when Ub is replaced with a Lys48----Arg variant, suggesting that the Ub-Ub moieties are linked predominantly through Lys48. Despite close similarities in structure and ubiquitination sites, conjugation to iso-2-cytochrome c is approximately 5-fold faster than for the iso-1 form; vertebrate cytochromes c are even poorer substrates, being ubiquitinated at only approximately 5% of the rate of the iso-2 protein. Comparison of several cytochrome c variants excludes alpha-N-acetylation or the identity of the N-terminal amino acid as the important recognition determinants in these reactions. The results, which include the finding that ferro and ferri-iso-2-cytochromes c are ubiquitinated equally, also are evidence against a simple correlation between ubiquitination efficiency and thermodynamic stability. Rather, the presence of a pair of lysines (Lys4-Lys5) within the relatively unstructured N-terminal extension of the yeast cytochromes c may be responsible for their preferential ubiquitination.  相似文献   

8.
9.
To elucidate the role of alpha-synuclein in the pathogenesis of Parkinson's disease, both human alpha-synuclein transgenic mice and targeted overexpression of human alpha-synuclein in rat substantia nigra using viral vector-based methods have been studied, however, little is known about the pathogenetic changes of dopaminergic neuron loss. Therefore, it is necessary to address whether the pathogenetic changes in brains with Parkinson's disease are recapitulated in these models. Here, we used the recombinant adeno-associated viral (rAAV) vector system for human alpha-synuclein gene transfer to rat substantia nigra and observed approximately 50% loss of dopaminergic neurons at 13 weeks after infection, which was comparably slower than the progression of neurodegeneration reported in other studies. In the slower progression of neurodegeneration, we identified several important features in common with the pathogenesis of Parkinson's disease, such as phosphorylation of alpha-synuclein at Ser129 and activation of caspase-9. Both findings were also evident in cortical tissues overexpressing alpha-synuclein via rAAV. Our results indicate that overexpression of alpha-synuclein via rAAV apparently recapitulates several important features of brains with Parkinson's disease and dementia with Lewy bodies, and thus alpha-synucleinopathy described here is likely to be an ideal model for the study of the pathogenesis of Parkinson's disease and dementia with Lewy bodies.  相似文献   

10.
alpha-Synuclein is a major protein component deposited in Lewy bodies and Lewy neurites that is extensively phosphorylated at Ser(129), although its role in neuronal degeneration is still elusive. In this study, several apoptotic pathways were examined in alpha-synuclein-overexpressing SH-SY5Y cells. Following the treatment with rotenone, a mitochondrial complex I inhibitor, wild type alpha-synuclein-overexpressing cells demonstrated intracellular aggregations, which shared a number of features with Lewy bodies, although cells overexpressing the S129A mutant, in which phosphorylation at Ser(129) was blocked, showed few aggregations. In wild typealpha-synuclein cells treated with rotenone, the proportion of phosphorylated alpha-synuclein was about 1.6 times higher than that of untreated cells. Moreover, induction of unfolded protein response (UPR) markers was evident several hours before the induction of mitochondrial disruption and caspase-3 activation. Eukaryotic initiation factor 2alpha, a member of the PERK pathway family, was remarkably activated at early phases. On the other hand, the S129A mutant failed to activate UPR. Casein kinase 2 inhibitor, which decreased alpha-synuclein phosphorylation, also reduced UPR activation. The alpha-synuclein aggregations were colocalized with a marker for the endoplasmic reticulum-Golgi intermediate compartment. Taken together, it seems plausible that alpha-synuclein toxicity is dependent on the phosphorylation at Ser(129) that induces the UPRs, possibly triggered by the disturbed endoplasmic reticulum-Golgi trafficking.  相似文献   

11.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major component of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD, but their pathogenic mechanism is not understood. Here we show that both wild type and mutant alpha-synuclein form insoluble fibrillar aggregates with antiparallel beta-sheet structure upon incubation at physiological temperature in vitro. Importantly, aggregate formation is accelerated by both PD-linked mutations. Under the experimental conditions, the lag time for the formation of precipitable aggregates is about 280 h for the wild type protein, 180 h for the A30P mutant, and only 100 h for the A53T mutant protein. These data suggest that the formation of alpha-synuclein aggregates could be a critical step in PD pathogenesis, which is accelerated by the PD-linked mutations.  相似文献   

12.
Phosphorylation-dependent sumoylation of estrogen-related receptor alpha1   总被引:1,自引:0,他引:1  
Vu EH  Kraus RJ  Mertz JE 《Biochemistry》2007,46(34):9795-9804
  相似文献   

13.
Negative regulation of the serine/threonine kinase B-Raf by Akt   总被引:15,自引:0,他引:15  
B-Raf contains multiple Akt consensus sites located within its amino-terminal regulatory domain. One site, Ser(364), is conserved with c-Raf but two additional sites, Ser(428) and Thr(439), are unique to B-Raf. We have investigated the role of both the conserved and unique phosphorylation sites in the regulation of B-Raf activity in vitro and in vivo. We show that phosphorylation of B-Raf by Akt occurs at multiple residues within its amino-terminal regulatory domain, at both the conserved and unique phosphorylation sites. The alteration of the serine residues within the Akt consensus sites to alanines results in a progressive increase in enzymatic activity in vitro and in vivo. Furthermore, expression of Akt inhibits epidermal growth factor-induced B-Raf activity and inhibition of Akt with LY294002 up-regulates B-Raf activity, suggesting that Akt negatively regulates B-Raf in vivo. Our results demonstrate that B-Raf activity can be negatively regulated by Akt through phosphorylation in the amino-terminal regulatory domain of B-Raf. This cross-talk between the B-Raf and Akt serine/threonine kinases is likely to play an important role in modulating the signaling specificity of the Ras/Raf pathway and in promoting biological outcome.  相似文献   

14.
We have previously reported the identification of seven in vivo phosphorylation sites in the amino-terminal region of the human progesterone receptor (PR). From our previous in vivo studies, it was evident that several phosphopeptides remained unidentified. In particular, we wished to determine whether human PR contains a phosphorylation site in the hinge region, as do other steroid receptors including chicken PR, human androgen receptor, and mouse estrogen receptor. Previously, problematic trypsin cleavage sites hampered our ability to detect phosphorylation sites in large incomplete tryptic peptides. Using a combination of mass spectrometry and in vitro phosphorylation, we have identified six previously unidentified phosphorylation sites in human PR. Using nanoelectrospray ionization mass spectrometry, we have identified two new in vivo phosphorylation sites, Ser(20) and Ser(676), in baculovirus-expressed human PR. Ser(676) is analogous to the hinge site identified in other steroid receptors. Additionally, precursor ion scans identified another phosphopeptide that contains Ser(130)-Pro(131), a likely candidate for phosphorylation. In vitro phosphorylation of PR with Cdk2 has revealed five additional in vitro Cdk2 phosphorylation sites: Ser(25), Ser(213), Thr(430), Ser(554), and Ser(676). At least two of these, Ser(213) and Ser(676), are authentic in vivo sites. We confirmed the presence of the Cdk2-phosphorylated peptide containing Ser(213) in PR from in vivo labeled T47D cells, indicating that this is an in vivo site. Our combined studies indicate that most, if not all, of the Ser-Pro motifs in human PR are sites for phosphorylation. Taken together, these data indicate that the phosphorylation of PR is highly complex, with at least 14 phosphorylation sites.  相似文献   

15.
alpha-Synuclein has been implicated in the pathogenesis of Parkinson's disease, since rare autosomal dominant mutations are associated with early onset of the disease and alpha-synuclein was found to be a major constituent of Lewy bodies. We have analyzed alpha-synuclein expression in transfected cell lines. In pulse-chase experiments alpha-synuclein appeared to be stable over long periods (t((1)/(2)) 54 h) and no endoproteolytic processing was observed. alpha-Synuclein was constitutively phosphorylated in human kidney 293 cells as well as in rat pheochromocytoma PC12 cells. In both cell lines phosphorylation was highly sensitive to phosphatases, since okadaic acid markedly stabilized phosphate incorporation. Phosphoamino acid analysis revealed that phosphorylation occurred predominantly on serine. Using site-directed mutagenesis we have identified a major phosphorylation site at serine 129 within the C-terminal domain of alpha-synuclein. An additional site, which was phosphorylated less efficiently, was mapped to serine 87. The major phosphorylation site was located within a consensus recognition sequence of casein kinase 1 (CK-1). In vitro experiments and two-dimensional phosphopeptide mapping provided further evidence that serine 129 was phosphorylated by CK-1 and CK-2. Moreover, phosphorylation of serine 129 was reduced in vivo upon inhibition of CK-1 or CK-2. These data demonstrate that alpha-synuclein is constitutively phosphorylated within its C terminus and may indicate that the function of alpha-synuclein is regulated by phosphorylation/dephosphorylation.  相似文献   

16.
Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines in the first exon of huntingtin (HTT), which confers aggregation-promoting properties to amino-terminal fragments of the protein (N-HTT). Mutant N-HTT aggregates are enriched for ubiquitin and contain ubiquitin E3 ligases, thus suggesting a role for ubiquitination in aggregate formation. Here, we report that tumor necrosis factor receptor-associated factor 6 (TRAF6) binds to WT and polyQ-expanded N-HTT in vitro as well as to endogenous full-length proteins in mouse and human brain in vivo. Endogenous TRAF6 is recruited to cellular inclusions formed by mutant N-HTT. Transient overexpression of TRAF6 promotes WT and mutant N-HTT atypical ubiquitination with Lys(6), Lys(27), and Lys(29) linkage formation. Both interaction and ubiquitination seem to be independent from polyQ length. In cultured cells, TRAF6 enhances mutant N-HTT aggregate formation, whereas it has no effect on WT N-HTT protein localization. Mutant N-HTT inclusions are enriched for ubiquitin staining only when TRAF6 and Lys(6), Lys(27), and Lys(29) ubiquitin mutants are expressed. Finally, we show that TRAF6 is up-regulated in post-mortem brains from HD patients where it is found in the insoluble fraction. These results suggest that TRAF6 atypical ubiquitination warrants investigation in HD pathogenesis.  相似文献   

17.
alpha-Synuclein (alpha-syn) and ubiquitin (Ub) are major protein components deposited in Lewy bodies (LBs) and Lewy neurites, which are pathologic hallmarks of idiopathic Parkinson disease (PD). Almost 90% of alpha-syn in LBs is phosphorylated at serine 129 (Ser(129)). However, the role of Ser(129)-phosphorylated alpha-syn in the biogenesis of LBs remains unclear. Here, we show that compared with coexpression of wild type (WT)alpha-syn and Ub, coexpression of phospho-mimic mutant alpha-syn (S129D) and Ub in neuro2a cells results in an increase of Ub-conjugates and the formation of ubiquitinated inclusions. Furthermore, S129D alpha-syn fails to increase the Ub-conjugates and form ubiquitinated inclusions in the presence of a K63R mutant Ub. In addition, as compared with WT alpha-syn, S129D alpha-syn increased cytoplasmic and neuritic aggregates of itself in neuro2a cells treated with H(2)O(2) and serum deprivation. These results suggest that the contribution of Ser(129)-phosphorylated alpha-syn to the Lys(63)-linked Ub-conjugates and aggregation of itself may be involved in the biogenesis of LBs in Parkinson disease and other related synucleinopathies.  相似文献   

18.
The internalization and degradation of vascular endothelial growth factor receptor 2 (VEGFR-2), a potent angiogenic receptor tyrosine kinase, is a central mechanism for the regulation of the coordinated action of VEGF in angiogenesis. Here, we show that VEGFR-2 is ubiquitinated in response to VEGF, and Lys 48-linked polyubiquitination controls its degradation via the 26S proteosome. The degradation and ubiquitination of VEGFR-2 is controlled by its PEST domain, and the phosphorylation of Ser1188/Ser1191 is required for the ubiquitination of VEGFR-2. F-box-containing β-Trcp1 ubiquitin E3 ligase is recruited to S1188/S1191 VEGFR-2 and mediates the ubiquitination and degradation of VEGFR-2. The PEST domain also controls the activation of p38 mitogen-activated protein kinase (MAPK) through phospho-Y1173. The activation of p38 stabilizes VEGFR-2, and its inactivation accelerates VEGFR-2 downregulation. The VEGFR-2-mediated activation of p38 is established through the protein kinase A (PKA)/MKK6 pathway. PKA is recruited to VEGFR-2 through AKAP1/AKAP149, and its phosphorylation requires Y1173 of VEGFR-2. The study has identified a unique mechanism in which VEGFR-2 stability and degradation is modulated. The PEST domain acts as a dual modulator of VEGFR-2; the phosphorylation of S1188/S1191 controls ubiquitination and degradation via β-Trcp1, where the phosphorylation of Y1173 through PKA/p38 MAPK controls the stability of VEGFR-2.  相似文献   

19.
The ubiquitin-conjugating enzyme Cdc34 (cell division cycle 34) plays an essential role in promoting the G1-S-phase transition of the eukaryotic cell cycle and is phosphorylated in vivo. In the present study, we investigated if phosphorylation regulates Cdc34 function. We mapped the in vivo phosphorylation sites on budding yeast Cdc34 (yCdc34; Ser207 and Ser216) and human Cdc34 (hCdc34 Ser203, Ser222 and Ser231) to serine residues in the acidic tail domain, a region that is critical for Cdc34's cell cycle function. CK2 (protein kinase CK2) phosphorylates both yCdc34 and hCdc34 on these sites in vitro. CK2-mediated phosphorylation increased yCdc34 ubiquitination activity towards the yeast Saccharomyces cerevisiae Sic1 in vitro, when assayed in the presence of its cognate SCFCdc4 E3 ligase [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box]. Similarly, mutation of the yCdc34 phosphorylation sites to alanine, aspartate or glutamate residues altered Cdc34-SCFCdc4-mediated Sic1 ubiquitination activity. Similar results were obtained when yCdc34's ubiquitination activity was assayed in the absence of SCFCdc4, indicating that phosphorylation regulates the intrinsic catalytic activity of Cdc34. To evaluate the in vivo consequences of altered Cdc34 activity, wild-type yCdc34 and the phosphosite mutants were introduced into an S. cerevisiae cdc34 deletion strain and, following synchronization in G1-phase, progression through the cell cycle was monitored. Consistent with the increased ubiquitination activity in vitro, cells expressing the phosphosite mutants with higher catalytic activity exhibited accelerated cell cycle progression and Sic1 degradation. These studies demonstrate that CK2-mediated phosphorylation of Cdc34 on the acidic tail domain stimulates Cdc34-SCFCdc4 ubiquitination activity and cell cycle progression.  相似文献   

20.
Ubiquitination, endocytosis, and lysosomal degradation of the IFNAR1 (interferon alpha receptor 1) subunit of the type I interferon (IFN) receptor is mediated by the SCFbeta-Trcp (Skp1-Cullin1-F-box protein beta transducin repeat-containing protein) E3 ubiquitin ligase in a phosphorylation-dependent manner. In addition, stability of IFNAR1 is regulated by its binding to Tyk2 kinase. Here we characterize the determinants of IFNAR1 ubiquitination and degradation. We found that the integrity of two Ser residues at positions 535 and 539 within the specific destruction motif present in the cytoplasmic tail of IFNAR1 is essential for the ability of IFNAR1 to recruit beta-Trcp as well as to undergo efficient ubiquitination and degradation. Using an antibody that specifically recognizes IFNAR1 phosphorylated on Ser535 we found that IFNAR1 is phosphorylated on this residue in cells. This phosphorylation is promoted by treatment of cells with IFNalpha. Although the cytoplasmic tail of IFNAR1 contains seven Lys residues that could function as potential ubiquitin acceptor sites, we found that only three (Lys501, Lys525, and Lys526), all located proximal to the destruction motif, are essential for ubiquitination and degradation of IFNAR1. Expression of Tyk2 stabilized IFNAR1 in a manner that was dependent neither on its binding to beta-Trcp nor IFNAR1 ubiquitination. We discuss the complexities and specifics of the ubiquitination and degradation of IFNAR1, which is a beta-Trcp substrate that undergoes degradation via a lysosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号