首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The disruption of commercially-available pressed Bakers' yeast (Saccharomyces cerevisiae) was studied using a relatively new high-pressure homogenizer (the Microfluidizer). Initial experiments using only mechanical disruption generally gave low disruption yields (i.e., less than 40% disruption in 5 passes). Consequently combinations of two disruption methods, namely enzymatic lysis and subsequent homogenization, were tested to identify achievable levels of disruption. The enzyme preparation employed was Zymolyase, which has been shown to effectively lyse the walls of viable yeast. Yeast cell suspensions ranging in concentration from 0.6 to 15 gDW/L were disrupted with and without enzymatic pre-treatment. Final total disruption obtained using the combined protocol approached 100% with 4 passes at a pressure of 95 MPa, as compared to only 32% disruption with 4 passes at 95 MPa using only homogenization. A model is presented to predict the fraction disrupted while employing this novel enzymatic pretreatment.Nomenclature a exponent of pressure (-) - b exponent of number of passes (-) - K disruption constant (MPa-a) - N number of passes (-) - P pressure (MPa) - R total fraction of cells disrupted (-) - Ro fraction of cells disrupted after enzymatic pre-treatment (-) - X cell concentration (dry weight) (gDW/L) abbreviation DW dry weight  相似文献   

2.
The resistance of Candida utilis (ATCC 9226) to disruption as a result of enzymatic pretreatment combined with high-pressure homogenization was found to increase when the yeast was grown from an inoculum which had previously been subjected to enzymatic pretreatment combined with high-pressure homogenization. The inoculum thus consisted of a mixture of undisrupted, viable cells and non-viable cells. The enzyme preparation employed was Zymolyase, which depolymerizes various components of the cell walls of viable yeast. A Microfluidizer was used for the high-pressure homogenization step. In order to obtain the 'disruption-resistant' cell fraction for use as an inoculum, 'normal' C. utilis was enzymatically pretreated, and subsequently homogenized (herein referred to as Microfluidization) using either three or 10 passes through the Microfluidizer at an operating pressure of 95 MPa. Yeast grown from the survivors of the enzyme/3-pass treatment were found to be somewhat more resistant to disruption by either enzymatic pretreatment alone or to enzymatic pretreatment followed by Microfluidization. Cells grown from enzyme/ 10-pass treated inocula exhibited the highest resistance to disruption. The 'disruption-resistant' fraction exhibited this characteristic through three serial re-cultivations. Possible mechanisms for the increased 'disruption-resistance' of this isolated population of C. utilis are presented.  相似文献   

3.
The disruption of native and recombinant strains of Escherichia coli was studied using a high-pressure homogenizer (Microfluidizer). The cells were grown in both batch and continuous fermentations. Cell suspensions ranging from 4 to 175 g dry wt/L were investigated at disruption pressures ranging from 30-95 MPa and at up to five passes. For both types of cells, the fraction of cells disrupted was dependent on the growth rate and concentration of the cells, the disruption pressure, and the number of passes through the disrupter. A model is presented that correlates the fractional disruption with these operating variables. The recombinant strain disrupted more readily than the native strain; 95 to 98% disruption of the former was achieved in two to three passes at a pressure of 95 MPa.  相似文献   

4.
A native strain of Neurospora sitophila was disrupted using enzymatic pretreatment combined with mechanical disruption in order to facilitate recovery of constitutive cellulases. Exceptional disruption (approaching 100%) was achieved when the enzymatic pretreatment protocol was used prior to mechanical disruption at a low rotor speed via a new bead mill (the Annu Mill). Further, increased recovery of cellulases (ca. two-fold increases in cellulase activity per unit biomass) appears attainable when this disruption protocol is employed. The enzyme preparation employed was Zymolyase, which lyses the walls of viable fungi. Combined disruption of the mycelial biomass appears to provide a secondary source of cellulases from Neurospora sitophila in addition to the extracellular primary source derived from the filtered (unprocessed) fermentation broth.Nomenclature CMCase carboxymethyl cellulase - FPase filter paper'ase - IU international unit (mol liberated hydrolysis product/min.) - N number of passes through the bead mill (–) - R total fraction of cells disrupted (–) - Ro fraction of cells disrupted after enzymatic pretreatment alone (–) - X cell concentration (dry weight) (gDW/L) Abbreviations DW dry weight  相似文献   

5.
The efficiency of physical separation of inclusion bodies from cell debris is related to cell debris size and inclusion body release and both factors should be taken into account when designing a process. In this work, cell disruption by enzymatic treatment with lysozyme and cellulase, by homogenization, and by homogenization with ammonia pretreatment is discussed. These disruption methods are compared on the basis of inclusion body release, operating costs, and cell debris particle size. The latter was measured with cumulative sedimentation analysis in combination with membrane-associated protein quantification by SDS-PAGE and a spectrophotometric peptidoglycan quantification method. Comparison of the results obtained with these two cell debris quantification methods shows that enzymatic treatment yields cell debris particles with varying chemical composition, while this is not the case with the other disruption methods that were investigated. Furthermore, the experiments show that ammonia pretreatment with homogenization increases inclusion body release compared to homogenization without pretreatment and that this pretreatment may be used to control the cell debris size to some extent. The enzymatic disruption process gives a higher product release than homogenization with or without ammonia pretreatment at lower operating costs, but it also yields a much smaller cell debris size than the other disruption process. This is unfavorable for centrifugal inclusion body purification in this case, where cell debris is the component going to the sediment and the inclusion body is the floating component. Nevertheless, calculations show that centrifugal separation of inclusion bodies from the enzymatically treated cells gives a high inclusion body yield and purity.  相似文献   

6.
A comparative evaluation of five different cell-disruption methods for the release of recombinant hepatitis B core antigen (HBcAg) from Escherichia coli was investigated. The cell disruption techniques evaluated in this study were high-pressure homogenization, batch-mode bead milling, continuous-recycling bead milling, ultrasonication, and enzymatic lysis. Continuous-recycling bead milling was found to be the most effective method in terms of operating cost and time. However, the highest degree of cell disruption and amounts of HBcAg were obtained from the high-pressure homogenization process. The direct purification of HBcAg from the unclarified cell disruptate derived from high-pressure homogenization and bead milling techniques, using batch anion-exchange adsorption methods, showed that the conditions of cell disruption have a substantial effect on subsequent protein recovery steps.  相似文献   

7.
Cell disruption is crucial during recovery of biopharmaceuticals overexpressed in E. coli, which tend to be produced intracellularly as insoluble inclusion bodies. Miniaturized high-throughput systems can accelerate the laborious downstream protocol for such biopharmaceuticals and enable integrated process-development. A fast and robust cell disruption method reflecting the protein and impurity profile of homogenates obtained by large-scale methods is required for such an approach. We established a miniaturized bead mill for parallel mechanical cell disruption at the microscale. Its total protein and impurity release, protein pattern, and particle size distribution were compared to results from microscale enzymatic digestion and referred to laboratory-scale high-pressure homogenization. Bead mill disruption led to equivalent protein and impurity release as well as to the same particle size profile as the large-scale reference. In contrast, lysates obtained by enzymatic digestion contained only 30–47% of overall protein, 17% of dsDNA, and 7–10% of endotoxin compared to those obtained by high-pressure homogenization; also larger debris was present in lysates after enzymatic digestion. The established method is fast, efficient, robust and comparable to current large-scale standards, allowing for parallelization of experiments. Thus, it is the method of choice for rapid integrated process development at the microscale.  相似文献   

8.
Alkaline-oxidative (A/O) pretreatment and enzymatic saccharification were optimized for bioethanol fermentation from water hyacinth by Saccharomyces cerevisiae. Water hyacinth was subjected to A/O pretreatment at various NaOH and H(2)O(2) concentrations and reaction temperatures for the optimization of bioethanol fermentation by S. cerevisiae. The most effective condition for A/O pretreatment was 7% (w/v) NaOH at 100 °C and 2% (w/v) H(2)O(2). The carbohydrate content was analyzed after reaction at various enzyme concentrations and enzyme ratios using Celluclast 1.5 L and Viscozyme L to determine the effective conditions for enzymatic saccharification. After ethanol fermentation using S. cerevisiae KCTC 7928, the concentration of glucose, ethanol and glycerol was analyzed by HPLC using a RI detector. The yield of ethanol in batch fermentation was 0.35 g ethanol/g biomass. Continuous fermentation was carried out at a dilution rate of 0.11 (per h) and the ethanol productivity was 0.77 [g/(l h)].  相似文献   

9.
Recovery of the intracellular bioplastic poly(β-hydroxybutyric acid) or PHB from fed-batch cultured Alcaligenes latus, ATCC 29713, was examined using combinations of chemical and mechanical treatments to disrupt the cells. Chemical pretreatments used sodium chloride and sodium hydroxide. For salt pretreatment the cells were exposed to NaCl (8?kg?m?3) and heat (60?°C, 1 h), cooled to 4?°C, and mechanically disrupted. For alkaline treatments, the cells were exposed to sodium hydroxide (0.025–0.8 kg?NaOH per kg biomass) and mechanically disrupted at ambient temperature. A combined treatment with sodium chloride (8 kg m?3), heat (60?°C, 1 h), and alkaline pH shock (pH 11.5, 1?min) was also tested. Mechanical disruption employed a continuous flow bead mill (2,800 rpm agitation speed, 90?ml?min?1 slurry flow rate, 512 m mean bead diameter, bead loadings of 80% or 85% of chamber volume). Disruption was quantified by protein release. Over most of the disruption period, the release of PHB was approximately proportional to protein release. Regardless of the pretreatment or bead load, the disruption obeyed first order kinetics; hence, the rate of protein release was directly proportional to the amount of unreleased protein. Relative to untreated biomass, pretreatment always produced earlier protein release during milling. Pretreatment with a minimum of 0.12?kg NaOH per kg biomass was necessary to enable complete disruption within three passes (85% bead load). Untreated biomass required more than twice as many passes. Irrespective of the chemical pretreatment, the bead loading strongly influenced the disruption rate which was higher at the higher loading. Alkaline hydrolysis associated PHB loss was observed, but it could be limited to insignificant levels by immediate neutralization of disrupted homogenates.  相似文献   

10.
Differential and sucrose gradient centrifugation of honey bee thoraces, disrupted by gentle methods and using mannitol-triethanolamine-EDTA buffer at pH 6.5, showed that in the honey bee thorax 92-94.8% of the trehalase was mitochondrial. Since only 92-95% of the cytochrome c oxidase, a known mitochondrial enzyme, was found in the mitochondrial fraction by these methods, it was concluded that honey bee trehalase is totally mitochondrial. Significant amounts of 'microsomal' or 'soluble' trehalase were formed only by harsh methods of thorax disruption and similar 'microsomal' or 'soluble' trehalases were also formed by harsh treatment of purified whole mitochondria. They thus seem to be artifacts of the isolation procedure. Studies (using marker enzymes) with purified intact mitochondria which were dispersed by various chemical, enzymatic, and physical methods showed that the trehalase in the mitochondria was membrane bound and that it was bound to either the outside of the inner membrane or to one of the sides of the outer membrane.  相似文献   

11.
Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid   总被引:1,自引:0,他引:1  
Kim JW  Kim KS  Lee JS  Park SM  Cho HY  Park JC  Kim JS 《Bioresource technology》2011,102(19):8992-8999
Liberation of fermentable sugars from recalcitrant lignocellulosic biomass is one of the key challenges in production of cellulosic ethanol. Here we developed a two-stage pretreatment process using aqueous ammonia and dilute sulfuric acid in a percolation mode to improve production of fermentable sugars from rice straw. Aqueous NH? was used in the first stage which removed lignin selectively but left most of cellulose (97%) and hemicellulose (77%). Dilute acid was applied in the second stage which removed most of hemicellulose, partially disrupted the crystalline structure of cellulose, and thus enhanced enzymatic digestibility of cellulose in the solids remaining. Under the optimal pretreatment conditions, the enzymatic hydrolysis yields of the two-stage treated samples were 96.9% and 90.8% with enzyme loadings of 60 and 15FPU/g of glucan, respectively. The overall sugar conversions of cellulose and hemicellulose into glucose and xylose by enzymatic and acid hydrolysis reached 89.0% and 71.7%, respectively.  相似文献   

12.
The disruption of Candida utilis cells in suspensions subjected to different types of stress was investigated. Stresses caused by impingement of a high velocity jet of suspended cells against a stationary surface were found to be significantly more effective for disruption than either shear or normal stresses. The fraction of cells disrupted by impingement is a first order function of the number of passes through the disruptor and, over a prescribed range of operating pressures, is a power function of pressure. These results indicate that impingement is the predominant mechanism causing cells disruption in high pressure flow devices such as Manton–Gaulin homogenizers. The impingement results suggest that cells grown in cyclic batch culture are easier to disrupt than cells grown at a lower specific growth rate in continuous culture. In addition to determining the fraction of cells disrupted, the release of invertase activity was determined for the impingement experiments. The fraction of total invertase activity released was found to be somewhat greater than the fraction of cells disrupted.  相似文献   

13.
An ultrafiltration membrane reactor was used to investigate the recovery of biocatalysts during enzymatic hydrolysis of pretreated sallow. Product inhibition could be eliminated by continuous removal of products through the ultrafiltration membrane, thus retaining the macromolecular substrate and enzymes. In this way, the degree of conversion was improved from 40% in a batch hydrolysis to 95% (within 20 h), and the initial hydrolysis rate was increased up to seven times. The recovery studies were focused on mechanical deactivation and irreversible adsorption on to the nonconvertible fraction of the substrate. Cellulase deactivation during mechanical agitation was not significant, and the loss of activity was attributed mainly to strong adsorption of the enzymes onto undigested material. This process was studied in semicontinuous hydrolyses, where fresh substrate was added intermittently. The amount of reducing sugars produced in this experiment was 25.7 g/g enzyme, compared to 4.7 g/g enzyme in a batch hydrolysis.  相似文献   

14.
Production of recombinant proteins as inclusion bodies is an important strategy in the production of technical enzymes and biopharmaceutical products. So far, protein from inclusion bodies has been recovered from the cell factory through mechanical or chemical disruption methods, requiring additional cost-intensive unit operations. We describe a novel method that is using a bacteriophage-derived lysis protein to directly recover inclusion body protein from Escherichia coli from high cell density fermentation process: The recombinant inclusion body product is expressed by using a mixed feed fed-batch process which allows expression tuning via adjusting the specific uptake rate of the inducing substrate. Then, bacteriophage ΦX174-derived lysis protein E is expressed to induce cell lysis. Inclusion bodies in empty cell envelopes are harvested via centrifugation of the fermentation broth. A subsequent solubilization step reveals the recombinant protein. The process was investigated by analyzing the impact of fermentation conditions on protein E-mediated cell lysis as well as cell lysis kinetics. Optimal cell lysis efficiencies of 99% were obtained with inclusion body titers of >2.0 g/l at specific growth rates higher 0.12 h?1 and inducer uptake rates below 0.125 g/(g × h). Protein E-mediated cell disruption showed a first-order kinetics with a kinetic constant of ?0.8 ± 0.3 h?1. This alternative inclusion body protein isolation technique was compared to the one via high-pressure homogenization. SDS gel analysis showed 10% less protein impurities when cells had been disrupted via high-pressure homogenization, than when empty cell envelopes including inclusion bodies were investigated. Within this contribution, an innovative technology, tuning recombinant protein production and substituting cost-intensive mechanical cell disruption, is presented. We anticipate that the presented method will simplify and reduce the production costs of inclusion body processes to produce technical enzymes and biopharmaceutical products.  相似文献   

15.
One of the most crucial steps in mitochondrial isolation is disruption of intact cells to denude intracellular organelles, but the yield and purity of different disruption protocols have not been well addressed. In the present study, MDCK cells were disrupted by mechanical (sonication and homogenization), physical (repeated freeze/thaw cycles and hypoosmotic burst), and chemical (using Triton X-100, NP-40, or CHAPS) methods. Efficacy of cell disruption was evaluated by trypan blue staining and mitochondria were subsequently isolated by standardized differential centrifugation. The yield of isolation was also determined by measuring protein concentrations, whereas the purity was examined by Janus green B staining, Western blot analyses of markers for mitochondria (COX-4) and other subcellular organelles/locales (i.e., nucleus, cytoplasm, endoplasmic reticulum, and lysosome), transmission electron microscopy, two-dimensional electrophoresis, and Q-TOF MS and/or MS/MS analyses. Our data demonstrated that sonication is the method of choice for disruption of cells prior to mitochondrial isolation for proteome analysis.  相似文献   

16.
Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR‐22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR‐22 was run in the BCR using 1% alkali‐pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed‐batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321–326, 2016  相似文献   

17.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

18.
Zhang J  Ma X  Yu J  Zhang X  Tan T 《Bioresource technology》2011,102(6):4585-4589
Four pretreatment processes including ionic liquids, steam explosion, lime, and dilute acid were used for enzymatic hydrolysis of sweet sorghum bagasse. Compared with the other three pretreatment approaches, steam-explosion pretreatment showed the greatest improvement on enzymatic hydrolysis of the bagasse. The maximum conversion of cellulose and the concentration of glucose obtained from enzymatic hydrolysis of steam explosion bagasse reached 70% and 25 g/L, respectively, which were both 2.5 times higher than those of the control (27% and 11 g/L). The results based on the analysis of SEM photos, FTIR, XRD and NMR detection suggested that both the reduction of crystallite size of cellulose and cellulose degradation from the Iα and Iβ to the Fibril surface cellulose and amorphous cellulose were critical for enzymatic hydrolysis. These pretreatments disrupted the crystal structure of cellulose and increased the available surface area, which made the cellulose better accessible for enzymatic hydrolysis.  相似文献   

19.
The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high‐throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high‐throughput disruption methods exist. The development of an automated, miniaturized, high‐throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high‐pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA‐based methods to mimic large‐scale homogenization processes. These results demonstrate that AFA‐mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130–140, 2018  相似文献   

20.
Microalgae have been used to remove nitrogen, phosphorus, and chemical oxygen demand (COD) from brewery wastewater (BWW). The microalga Scenedesmus obliquus was grown on BWW, using bubble column photobioreactors that operated under batch and continuous regimes. For the first time, the cell physiological status cell membrane integrity and enzymatic activity was monitored during the microalgae based BWW treatment, using flow cytometry. All the cultivations batch and continuous displayed a proportion of cells with intact membrane >?87%, although the continuous cultivations displayed a lower proportion of cells with enzymatic activity (20–40%) than the batch cultivations (97%). The dilution rate of 0.26 day?1 was the most favorable condition, since the microalgae cultivation attained the maximum biomass productivity (0.2 g ash-free dry weight day?1) and the total nitrogen and COD removal rates were the highest (97 and 74%, respectively), while the phosphorous removal rate was the third (23%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号