首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous calmodulin (CaM) in the EGTA-washed cerebral-cortical synaptosomal membrane (SM) preparation was estimated below 3 micrograms/ml protein by the semiquantitative immunoblot analysis (Natsukari, N., Ohta, H. and Fujita, M. (1989) J. Immunol. Methods 125, 159-166). Membrane-bound CaM was immunoelectron-microscopically demonstrated in EGTA-washed, non-treated (control), and Ca(2+)-treated cerebral-cortical synaptosomal membranes (SM) as well as for the SM enriched with added CaM. The density of CaM increased in the above order. CaM-dependent adenylate cyclase and CaM-dependent protein kinase II (CaM-kinase II) activities were restored, whereas the phosphodiesterase (PDE) activity was not affected by exogenous CaM over all the Ca2+ concentrations tested. Adenylate cyclase at pCa 6.2 was synergistically activated either by GTP and CaM or by CaM and beta-adrenergic agonist, (+/-)-isoproterenol, reflecting the intactness of signal transduction pathway in the SM. Also demonstrated were the presence of protein kinase A, CaM-kinase II, and their endogenous substrates in the SM. Based on 32P-autoradiography and 125I-CaM overlay data certain CaM-binding proteins such as CaM-kinase II and synapsin I were identified on SDS-PAGE. Ca(2+)-dependent and -independent CaMBPs were distinguished by 125I-CaM gel overlay with and without Ca2+. The former had bigger molecular size (greater than or equal to 49 kDa) than the latter (less than or equal to 34 kDa). Yield of Ca(2+)-dependent CaMBPs was not affected by Ca2+ concentration during preparation of the SM while that of Ca(2+)-independent CaMBPs was reduced by exposure to 100 microM Ca2+. In contrast with the CaMBPs of brain SM, those of enterocyte and eyrthrocyte plasma membranes especially, microvillous membrane of the enterocyte, showed quite distinct CaMBP profiles. The present findings suggested that the EGTA-washed SM preparation made a useful system for studying the role of CaM in the brain SM.  相似文献   

2.
Calmodulin-binding proteins (CaMBPs) were analyzed during estrogen-stimulated growth in the human breast cancer cell line ZR-75-1. A variety of Ca2(+)-dependent and -independent CaMBPs were observed to be present in these cells. Calmodulin (CaM) binding to a 51-kilodalton protein was shown to be Ca2(+)-dependent. Moreover, binding to this protein was reduced in the estrogen-treated cells. This effect occurred early during estrogen-stimulated cell growth and was maintained during exponential growth in the presence of estrogen. 125I-labeled CaM overlay procedure of two-dimensional polyacrylamide gels reveals that this 51-kilodalton protein is composed of at least two distinct isoforms with different isoelectric points. Subcellular localization demonstrates that this protein resides exclusively in the microsomal fraction.  相似文献   

3.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   

4.
Fusion proteins and full-length mutants were generated to identify the Ca(2+)-free (apoCaM) and Ca(2+)-bound (CaCaM) calmodulin binding sites of the skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1). [(35)S]Calmodulin (CaM) overlays of fusion proteins revealed one potential Ca(2+)-dependent (aa 3553-3662) and one Ca(2+)-independent (aa 4302-4430) CaM binding domain. W3620A or L3624D substitutions almost abolished completely, whereas V3619A or L3624A substitutions reduced [(35)S]CaM binding to fusion protein (aa 3553-3662). Three full-length RyR1 single-site mutants (V3619A,W3620A,L3624D) and one deletion mutant (Delta4274-4535) were generated and expressed in human embryonic kidney 293 cells. L3624D exhibited greatly reduced [(35)S]CaM binding affinity as indicated by a lack of noticeable binding of apoCaM and CaCaM (nanomolar) and the requirement of CaCaM (micromolar) for the inhibition of RyR1 activity. W3620A bound CaM (nanomolar) only in the absence of Ca(2+) and did not show inhibition of RyR1 activity by 3 microm CaCaM. V3619A and the deletion mutant bound apoCaM and CaCaM at levels compared with wild type. V3619A activity was inhibited by CaM with IC(50) approximately 200 nm, as compared with IC(50) approximately 50 nm for wild type and the deletion mutant. [(35)S]CaM binding experiments with sarcoplasmic reticulum vesicles suggested that apoCaM and CaCaM bind to the same region of the native RyR1 channel complex. These results indicate that the intact RyR1 has a single CaM binding domain that is shared by apoCaM and CaCaM.  相似文献   

5.
The calcium hypothesis of Alzheimer's disease (AD) invokes the disruption of calcium signaling as the underlying cause of neuronal dysfunction and ultimately apoptosis. As a primary calcium signal transducer, calmodulin (CaM) responds to cytosolic calcium fluxes by binding to and regulating the activity of target CaM-binding proteins (CaMBPs). Ca(2+)-dependent CaMBPs primarily contain domains (CaMBDs) that can be classified into motifs based upon variations on the basic amphiphilic alpha-helix domain involving conserved hydrophobic residues at positions 1-10, 1-14 or 1-16. In contrast, an IQ or IQ-like domain often mediates Ca(2+)-independent CaM-binding. Based on these attributes, a search for CaMBDs reveals that many of the proteins intimately linked to AD may be calmodulin-binding proteins, opening new avenues for research on this devastating disease.  相似文献   

6.
Ca(2+) binds to calmodulin (CaM) and triggers the interaction of CaM with its target proteins; CaM binding proteins (CaMBPs) can also regulate the metal binding to CaM. In the present paper, La(3+) binding to CaM was studied in the presence of the CaM binding peptides, Mastoparan (Mas) and Mas X, using ultrafiltration and titration of fluorescence. Ca(2+) binding was used as an analog to understand La(3+) binding in intact CaM and isolated N/C-terminal CaM domain of metal-CaM binary system and metal-CaM-CaMBPs ternary system. Mas/Mas X increased binding affinity of La(3+) to CaM by 0.5 approximately 3 orders magnitude. The metal ions binding affinity to the C-terminal or the N-terminal CaM domain suggested that in the first phase of binding process both Ca(2+) and La(3+) bind to C-terminal of CaM in the presence of Mas/Mas X. In the presence of CaM binding peptides, La(3+) binding preference was substantially altered from the metal-CaM binary system where La(3+) slightly preferred binding to the N-terminal sites of CaM. Our results will be helpful in understanding La(3+) interactions with CaM in the biological systems.  相似文献   

7.
Calmodulin (CaM) antagonists, trifluoperazine (TFP) or calmidazolium (R24571), dose-dependently inhibited cAMP and folic acid (FA) chemotaxis in Dictyostelium. Developing, starved, and refed cells were compared to determine if certain CaM-binding proteins (CaMBPs) and CaM-dependent phosphorylation events could be identified as potential downstream effectors. Recombinant CaM ([35S]VU-1-CaM) gel overlays coupled with cell fractionation revealed at least three dozen Ca(2+)-dependent and around 12 Ca(2+)-independent CaMBPs in Dictyostelium. The CaMBPs associated with early development were also found in experimentally starved cells (cAMP chemotaxis), but were different for the CaMBP population linked to growth-phase cells (FA chemotaxis). Probing Western blots with phosphoserine antibodies revealed several phosphoprotein bands that displayed increases when cAMP-responsive cells were treated with TFP. In FA-responsive cells, several but distinct phosphoproteins decreased when treated with TFP. These data show that unique CaMBPs are present in growing, FA-chemosensitive cells vs. starved cAMP-chemoresponsive cells that may be important for mediating CaM-dependent events during chemotaxis.  相似文献   

8.
An increasing number of ion channels have been found to be regulated by the direct binding of calmodulin (CaM), but its structural features are mostly unknown. Previously, we identified the Ca(2+)-dependent and -independent interactions of CaM to the voltage-gated sodium channel via an IQ-motif sequence. In this study we used the trypsin-digested CaM fragments (TR(1)C and TR(2)C) to analyze the binding of Ca(2+)-CaM or Ca(2+)-free (apo) CaM with a sodium channel-derived IQ-motif peptide (NaIQ). Circular dichroic spectra showed that NaIQ peptide enhanced alpha-helicity of the CaM C-terminal lobe, but not that of the CaM N-terminal lobe in the absence of Ca(2+), whereas NaIQ enhanced the alpha-helicity of both the N- and C-terminal lobes in the presence of Ca(2+). Furthermore, the competitive binding experiment demonstrated that Ca(2+)-dependent CaM binding of target peptides (MLCKp or melittin) with CaM was markedly suppressed by NaIQ. The results suggest that IQ-motif sequences contribute to prevent target proteins from activation at low Ca(2+) concentrations and may explain a regulatory mechanism why highly Ca(2+)-sensitive target proteins are not activated in the cytoplasm.  相似文献   

9.
The nitric oxide synthase (NOS) enzymes are bound and activated by the Ca(2+)-binding protein, calmodulin (CaM). We have utilized CaM mutants deficient in binding Ca(2+) with mutations in the N-lobe (CaM(12)), the C-lobe (CaM(34)), or both lobes of CaM (CaM(1234)) to determine their effect on the binding and activation of the Ca(2+)-dependent neuronal (nNOS) and Ca(2+)-independent inducible NOS (iNOS) isoforms. Four different kinetic assays were employed to monitor the effect of these CaM mutants on electron transfer rates in NOS. Protein-protein interactions between CaM and NOS were studied using steady-state fluorescence and spectropolarimetry to monitor the binding of these CaM mutants to nNOS and iNOS CaM-binding domain peptides. The CaM mutants were unable to activate nNOS, however, our CD results show that the C-terminal lobe of CaM is capable of binding to nNOS peptide in the presence of Ca(2+). Our results prove for the first time without the use of chelators that apo-CaM is capable of binding to iNOS peptides and holoenzymes.  相似文献   

10.
Ca(2+)-binding protein-1 (CaBP1) and calmodulin (CaM) are highly related Ca(2+)-binding proteins that directly interact with, and yet differentially regulate, voltage-gated Ca(2+) channels. Whereas CaM enhances inactivation of Ca(2+) currents through Ca(v)1.2 (L-type) Ca(2+) channels, CaBP1 completely prevents this process. How CaBP1 and CaM mediate such opposing effects on Ca(v)1.2 inactivation is unknown. Here, we identified molecular determinants in the alpha(1)-subunit of Ca(v)1.2 (alpha(1)1.2) that distinguish the effects of CaBP1 and CaM on inactivation. Although both proteins bind to a well characterized IQ-domain in the cytoplasmic C-terminal domain of alpha(1)1.2, mutations of the IQ-domain that significantly weakened CaM and CaBP1 binding abolished the functional effects of CaM, but not CaBP1. Pulldown binding assays revealed Ca(2+)-independent binding of CaBP1 to the N-terminal domain (NT) of alpha(1)1.2, which was in contrast to Ca(2+)-dependent binding of CaM to this region. Deletion of the NT abolished the effects of CaBP1 in prolonging Ca(v)1.2 Ca(2+) currents, but spared Ca(2+)-dependent inactivation due to CaM. We conclude that the NT and IQ-domains of alpha(1)1.2 mediate functionally distinct interactions with CaBP1 and CaM that promote conformational alterations that either stabilize or inhibit inactivation of Ca(v)1.2.  相似文献   

11.
钙不依赖性钙调素结合蛋白的研究进展   总被引:4,自引:0,他引:4  
钙调素是普遍存在于真核生物细胞中、发挥多种生物学调控作用的信号组分.钙调素不仅在有Ca2 情况下通过与钙依赖性钙调素结合蛋白作用而传递信号,也能在相对无Ca2 条件下直接结合钙不依赖性钙调素结合蛋白而传递信号.综述了无钙离子结合钙调素及钙不依赖性钙调素结合蛋白的结构特性、钙不依赖性钙调素结合蛋白的种类及其可能的生物学作用,这将有助于我们深入认识钙调素介导信号途径的特异性、复杂性和多样性.  相似文献   

12.
This report describes Ca2+-dependent binding of 125I-labeled calmodulin (125I-CaM) to erythrocyte membranes and identification of two new CaM-binding proteins. Erythrocyte CaM labeled with 125I-Bolton Hunter reagent fully activated erythrocyte (Ca2+ + Mg2+)-ATPase. 125I-CaM bound to CaM depleted membranes in a Ca2+-dependent manner with a Ka of 6 x 10(-8) M Ca2+ and maximum binding at 4 x 10(-7) M Ca2+. Only the cytoplasmic surface of the membrane bound 125I-CaM. Binding was inhibited by unlabeled CaM and by trifluoperazine. Reduction of the free Ca2+ concentration or addition of trifluoperazine caused a slow reversal of binding. Nanomolar 125I-CaM required several hours to reach binding equilibrium, but the rate was much faster at higher concentrations. Scatchard plots of binding were curvilinear, and a class of high affinity sites was identified with a KD of 0.5 nM and estimated capacity of 400 sites per cell equivalent for inside-out vesicles (IOVs). The high affinity sites of IOVs most likely correspond to Ca2+ transporter since: (a) Ka of activation of (Ca2+ + Mg2+)-ATPase and KD for binding were nearly identical, and (b) partial digestion of IOVs with alpha-chymotrypsin produced activation of the (Ca2+ + Mg2+)-ATPase with loss of the high affinity sites. 125I-CaM bound in solution to a class of binding proteins (KD approximately 55 nM, 7.3 pmol per mg of ghost protein) which were extracted from ghosts by low ionic strength incubation. Soluble binding proteins were covalently cross-linked to 125I-CaM with Lomant's reagent, and 2 bands of 8,000 and 40,000 Mr (Mr of CaM subtracted) and spectrin dimer were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. The 8,000 and 40,000 Mr proteins represent a previously unrecognized class of CaM-binding sites which may mediate unexplained Ca2+-induced effects in the erythrocyte.  相似文献   

13.
We have recently investigated by far-UV circular dichroism (CD) the effects of Ca(2+) binding and the phosphorylation of Ser 81 for the synthetic peptide CaM [54-106] encompassing the Ca(2+)-binding loops II and III and the central alpha helix of calmodulin (CaM) (Arrigoni et al., Biochemistry 2004, 43, 12788-12798). Using computational methods, we studied the changes in the secondary structure implied by these spectra with the aim to investigate the effect of Ca(2+) binding and the functional role of the phosphorylation of Ser 81 in the action of the full-length CaM. Ca(2+) binding induces the nucleation of helical structure by inducing side chain stacking of hydrophobic residues. We further investigated the effect of Ca(2+) binding by using near-UV CD spectroscopy. Molecular dynamics simulations of different fragments containing the central alpha-helix of CaM using various experimentally determined structures of CaM with bound Ca(2+) disclose the structural effects provided by the phosphorylation of Ser 81. This post-translational modification is predicted to alter the secondary structure in its surrounding and also to hinder the physiological bending of the central helix of CaM through an alteration of the hydrogen bond network established by the side chain of residue 81. Using quantum mechanical methods to predict the CD spectra for the frames obtained during the MD simulations, we are able to reproduce the relative experimental intensities in the far-UV CD spectra for our peptides. Similar conformational changes that take place in CaM [54-106] upon Ca(2+) binding and phosphorylation may occur in the full-length CaM.  相似文献   

14.
Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.  相似文献   

15.
Smooth muscle contraction is activated by phosphorylation of the 20-kDa light chains of myosin catalyzed by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK). According to popular current theory, the CaM involved in MLCK regulation is Ca(2+)-free and dissociated from the kinase at resting cytosolic free Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) saturates the four Ca(2+)-binding sites of CaM, which then binds to and activates actin-bound MLCK. The results of this study indicate that this theory requires revision. Sufficient CaM was retained after skinning (demembranation) of rat tail arterial smooth muscle in the presence of EGTA to support Ca(2+)-evoked contraction, as observed previously with other smooth muscle tissues. This tightly bound CaM was released by the CaM antagonist trifluoperazine (TFP) in the presence of Ca(2+). Following removal of the (Ca(2+))(4)-CaM-TFP(2) complex, Ca(2+) no longer induced contraction. The addition of exogenous CaM to TFP-treated tissue at a [Ca(2+)] subthreshold for contraction or even in the absence of Ca(2+) (presence of 5 mm EGTA), followed by washout of unbound CaM, restored Ca(2+)-induced contraction; this required MLCK activation, since it was blocked by the MLCK inhibitor ML-9. The data suggest, therefore, that a specific pool of cellular CaM, tightly bound to myofilaments at resting [Ca(2+)](i), or even in the absence of Ca(2+), is responsible for activation of contraction following a local increase in [Ca(2+)]. This mechanism would allow for localized changes in [Ca(2+)] in regions of the cell distant from the myofilaments to regulate distinct Ca(2+)-dependent processes without triggering a contractile response. Immobilized CaM, therefore, resembles troponin C, the Ca(2+)-binding regulatory protein of striated muscle, which is also bound to the thin filament in a Ca(2+)-independent manner.  相似文献   

16.
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.  相似文献   

17.
TRPM2, a member of the transient receptor potential (TRP) superfamily, is a Ca(2+)-permeable channel activated by oxidative stress or tumor necrosis factoralpha involved in susceptibility to cell death. TRPM2 activation is dependent on the level of intracellular Ca(2+). We explored whether calmodulin (CaM) is the Ca(2+) sensor for TRPM2. HEK 293T cells were transfected with TRPM2 and wild type CaM or mutant CaM (CaM(MUT)) with substitutions of all four EF hands. Treatment of cells expressing TRPM2 with H(2)O(2) or tumor necrosis factor alpha resulted in a significant increase in intracellular calcium ([Ca(2+)](i)). This was not affected by coexpression of CaM, suggesting that endogenous CaM levels are sufficient for maximal response. Cotransfection of CaM(MUT) with TRPM2 dramatically inhibited the increase in [Ca(2+)](i), demonstrating the requirement for CaM in TRPM2 activation. Immunoprecipitation confirmed direct interaction of CaM and CaM(MUT) with TRPM2, and the Ca(2+) dependence of this association. CaM bound strongly to the TRPM2 N terminus (amino acids 1-730), but weakly to the C terminus (amino acids 1060-1503). CaM binding to an IQ-like motif (amino acids 406-416) in the TRPM2 N terminus was demonstrated utilizing gel shift, immunoprecipitation, biotinylated CaM overlay, and pull-down assays. A substitution mutant of the IQ-like motif of TRPM2 (TRPM2-IQ(MUT1)) reduced but did not eliminate CaM binding to TRPM2, suggesting the presence of at least one other CaM binding site. The functional importance of the TRPM2 IQ-like motif was demonstrated by treatment of TRPM2-IQ(MUT1)-expressing cells with H(2)O(2). The increase in [Ca(2+)](i) observed with wild type TRPM2 was absent and cell viability was preserved. These data demonstrate the requirement for CaM in TRPM2 activation. They suggest that Ca(2+) entering through TRPM2 enhances interaction of CaM with TRPM2 at the IQ-like motif in the N terminus, providing crucial positive feedback for channel activation.  相似文献   

18.
A cDNA clone for the alpha subunit of mouse brain Ca2+/CaM-dependent protein kinase II (CaM-kinase II) was transcribed in vitro and translated in a rabbit reticulocyte lysate system. Inclusion of [35S]methionine in the translation system yielded a single 35S-polypeptide of about 50 kDa. When the translation system was assayed for CaM-kinase II activity, there was a 5-10-fold enrichment of kinase activity which was totally dependent on Ca2+/calmodulin (CaM). Both the 50-kDa 35S-polypeptide and the Ca2+/CaM-dependent protein kinase activity were quantitatively immunoprecipitated by rat brain CaM-kinase II antibody. When the translated wild-type kinase was subjected to autophosphorylation conditions in the presence of Ca2+, CaM, Mg2+, and ATP, the Ca2+-independent activity (assayed in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) increased from 5.8 +/- 0.7 to 26.5 +/- 2.1% of total activity (assayed in the presence of Ca2+/CaM). These properties confirm the identity of the kinase translated in vitro as CaM-kinase II. The role of Thr-286 autophosphorylation in formation of the Ca2+-independent activity was investigated by site-directed mutation of Thr-286 to Ala (Ala-286 kinase) and to Asp (Asp-286 kinase). The Ala-286 kinase was completely dependent on Ca2+/CaM for activity prior and subsequent to autophosphorylation. The Asp-286 kinase exhibited 21.9 +/- 0.8% Ca2+-independent activity, and this was not increased by autophosphorylation. These results establish that introduction of negative charge(s) at residue 286, either by autophosphorylation of Thr or by mutation to Asp, is sufficient and necessary to generate the partially Ca2+-independent form of CaM-kinase II.  相似文献   

19.
K A Ocorr  H Schulman 《Neuron》1991,6(6):907-914
In vitro phosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) converts it to a form that is independent of Ca2+. We demonstrate that significant Ca(2+)-independent CaM kinase activity is present in untreated hippocampal slices. Two manipulations that produce a long-lasting enhancement of neuronal activity in hippocampal slices, elevated extracellular Ca2+ or depolarization with high K+, generate additional Ca(2+)-independent activity. This increase is dependent on extracellular Ca2+ and is correlated with an increased phosphorylation of CaM kinase. In contrast, CaM kinase in posterior pituitary, a brain structure that is not thought to be involved in memory-related processes, is not modulated by depolarization. These results suggest that the Ca(2+)-independent form of CaM kinase may modulate neuronal activity in the hippocampus.  相似文献   

20.
The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [(35)S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca(2+) concentrations from <0.01 to 100 microM. At 0.15 microM Ca(2+), [(35)S]CaM bound to RyR2 with decreased affinity and binding enthalpy compared with RyR1. The rates of [(35)S]CaM dissociation from RyR1 increased as the temperature was raised, whereas at 0.15 microM Ca(2+) the rate from RyR2 was little affected. The results suggest major differences in the energetics of CaM binding to and dissociation from RyR1 and RyR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号