首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It has been demonstrated that Thiobacillus denitrificans may be readily cultured aerobically in batch and continuous flow reactors on H(2)S(g) under sulfide limiting conditions. Under these conditions sulfide concentrations in the culture medium were less than 1muM resulting in very low concentrations of H(2)S in the reactor outlet gas. Biomass yield under aerobic conditions was much lower than previously reported for anaerobic conditions, presumably because of oxygen inhibition of growth. However, biomass yield was not affected by steady state oxygen concentration in the range of 45muM-150muM. Biomass yield was also observed to be essentially independent of specific growth rate in the range of 0.030-0.053 h(-1). Indicators of reactor upset were determined and recovery from upset conditions demonstrated. Maximum loading of the biomass for H(2)S oxidation under aerobic conditions was observed to be 15.1-20.9 mmol/h/g biomass which is much higher than previously reported for aerobic conditions. Other aspects of the stoichiometry of aerobic H(2)S oxidation are also reported.  相似文献   

2.
Characterization of a novel biocatalyst system for sulfide oxidation   总被引:1,自引:0,他引:1  
It has been demonstrated that an enrichment culture dominated by Thiomicrospira sp. CVO may be cultured on H2S(g) as an energy source under sulfide-limiting conditions in suspended culture with nitrate as the electron acceptor. Hydrogen sulfide (10,000 ppmv) was completely removed from the feed gas and oxidized to sulfate in <3 s of gas-liquid contacting time. Maximum loading of the biomass for sulfide oxidation was observed to be 5.8 mmol H2S/h-g biomass protein, comparable to that reported previously for Thiobacillus denitrificans under similar conditions. However, the enrichment culture was shown to be more tolerant of extremes in pH and elevated temperature than T. denitrificans. Coupled with a reported tolerance of CVO for up to 10% NaCl, these observations suggest that a CVO-based culture is potentially a more robust biocatalyst system for sulfide oxidation than cultures based on Thiobacilli.  相似文献   

3.
Oxidation of hydrogen sulfide by Thiobacilli   总被引:1,自引:0,他引:1  
It has been previously demonstrated that the chemoautotroph and facultative anaerobe, Thiobacillus denitrificans, may be cultured aerobically or anaerobically in batch and continuous reactors on H(2)S(g) under sulfide-limiting conditions. A process has been proposed for the removal of H(2)S from gases based on oxidation of H(2)S by T. denitrificans. Described here is a study of H(2)S oxidation by other Thiobacilli, the purpose of which has been to determine whether other Thiobacilli offer any advantages over T. denitrificans in the aerobic oxidation of H(2)S. Although four other species of Thiobacillus were found to grow on H(2)S as an energy source, none offer a clear advantage over T. denitrificans.  相似文献   

4.
Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor   总被引:1,自引:0,他引:1  
A biotechnological process is described to remove hydrogen sulfide (H(2)S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO(4) (2-)) and thiosulfate (S(2)O(3) (2-)) reducing reactor. The feasibility of biological H(2)S oxidation at pH around 10 and total sodium concentration of 2 mol L(-1) was studied in gas-lift bioreactors, using halo-alkaliphilic sulfur-oxidizing bacteria (HA-SOB). Reactor operation at different oxygen to sulfide (O(2):H(2)S) supply ratios resulted in a stable low redox potential that was directly related with the polysulfide (S(x) (2-)) and total sulfide concentration in the bioreactor. Selectivity for SO(4) (2-) formation decreased with increasing S(x) (2-) and total sulfide concentrations. At total sulfide concentrations above 0.25 mmol L(-1), selectivity for SO(4) (2-) formation approached zero and the end products of H(2)S oxidation were elemental sulfur (S(0)) and S(2)O(3) (2-). Maximum selectivity for S(0) formation (83.3+/-0.7%) during stable reactor operation was obtained at a molar O(2):H(2)S supply ratio of 0.65. Under these conditions, intermediary S(x) (2-) plays a major role in the process. Instead of dissolved sulfide (HS(-)), S(x) (2-) seemed to be the most important electron donor for HA-SOB under S(0) producing conditions. In addition, abiotic oxidation of S(x) (2-) was the main cause of undesirable formation of S(2)O(3) (2-). The observed biomass growth yield under SO(4) (2-) producing conditions was 0.86 g N mol(-1) H(2)S. When selectivity for SO(4) (2-) formation was below 5%, almost no biomass growth was observed.  相似文献   

5.
In a continuous fermentation, significant advantages may be gained by immobilization of microbial cells. Immobilization allows cells to be retained in the fermenter or to be readily recovered and recycled. Therefore, the hydraulic retention time and the biomass retention time are decoupled. A novel cell immobilization has been developed for the immobilization of autotrophic bacteria by coculture with floc-forming heterotrophic bacteria with growth of the latter limited by the availability of organic carbon. The result is an immobilization matrix which grows along with the immobilized autotroph. We have previously demonstrated the utility of this approach by immobilizing the chemoautotroph Thiobacillus denitrificans in macroscopic floc by coculture with floc-forming heterotrophs from an activated sludge treatment facility. Floc with excellent settling characteristics were produced. These floc have now been used to remove H(2)S from a gas stream bubbled through continuous cultures. The stoichiometry and kinetics of H(2)S oxidation by immobilized T. denitrificans were comparable to that reported previously for free-cell cultures. Oxygen uptake measurements indicated the growth of both T. denitrificans and the heterotrophs although the medium contained no added organic carbon. Continuous cultures with total biomass recycle were maintained for up to four months indicating the long-term stability of the commensal relationship between the immobilized autotroph and the heterotrophs which composed the immobilization matrix. It was observed that at any given H(2)S loading the biomass concentration reached a maximum and leveled out. The ultimate biomass concentration was dependent upon the H(2)S feed rate.  相似文献   

6.
The kinetics of acetate, propionate, and butyrate removal was studied in conditions of leachate treatment in a plug flow anaerobic fixed-film reactor made of a sequence of seven perfectly mixed compartments. An original experimental procedure was followed under sequential feeding conditions so as to maintain the Bacteriol biomass in a quasi-steady state all along the study. With an appropriate computer program based on the least squares method, the apparent kinetic parameters of VFA removal were calculated within concentration ranges below the levels of salt inhibition. The models proposed are based on simple theoretical considerations. For acetate and n-butyrate removal, the best fits were given by the Michaelis-Menten equation with respectively: V(m) (spec) = 0.49 +/- 0.06 g CH(3) COOH g(-1) biomass h(-1)and 0.18 +/- 0.02 g n-CH(3)CH(2)CH(2)COOH g(-1) biomass h(-1) and: K(s) = 21.2 +/- 0.9 g CH(3)COOH L(-1) liquid phase and 8.2 +/- 0.9 g n-CH(3)CH(2)CH(2)COOH L(-1) liquid phase, Iso-butyrate was produced during n-butyrate catabolism and the apparent removal rate of (n + iso)-butyrate considered as a whole was also described by the Michaelis-Menten equation with V(m) (spec) = 0.14 +/- 0.02 g(n + iso)-butyrate g(-1) biomass h(-1) and K(s) = 9.0 +/- 1.2 g (n + iso) butyrate L(-1) liquid phase. On the other hand in the case of propionate, the best fit was obtained with a first-order equation with K(spec) = (0.88 +/- 0.05) 10(-2) L liquid phase g(-1) biomass h(-1). These constants were subsequently used to predict the removal of mixtures of the three major VFAs under study, at various feed concentrations. Three sets of concentrations were tested, and the experimental data were compared to the simulations. This study, together with other experimental observations previously reported, tends to show that under sequential feeding conditions the classical assumption of butyrate beta-oxidation should be rejected. Butyrate seems to be anaerobically decarboxylated, but propionate thus formed inside the biofilm is degraded as soon as its formation proceeds. It was therefore considered that butyrate degradation produces, through propionate intermediate, 1 mole acetate per mole butyrate removed. When propionate or butyrate concentrations were high, the same phenomenon was noted, to a much lower extent, for the degradation of acetate formed inside the biofilm.  相似文献   

7.
The removal of hydrogen sulfide (H2S) from aqueous media was investigated using Thiobacillus novellas cells immobilized on a SiO2 carrier (biosand). The optimal growth conditions for the bacterial strain were 30 degrees C and initial pH of 7.0. The main product of hydrogen sulfide oxidation by T. novellus was identified as the sulfate ion. A removal efficiency of 98% was maintained in the three-phase fluidized-bed reactor, whereas the efficiency was reduced to 90% for the two-phase fluidized-bed reactor and 68% for the two-phase reactor without cells. The maximum gas removal capacity for the system was 254 g H2S/m3/h when the inlet H2S loading was 300 g/m3/h (1,500 ppm). Stable operation of the immobilized reactor was possible for 20 days with the inlet H2S concentration held to 1,100 ppm. The fluidized bed bioreactor appeared to be an effective means for controlling hydrogen sulfide emissions.  相似文献   

8.
An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters and for simultaneous removal of sulfide or thiosulfate and nitrate. A suspended culture of sulfur-utilizing denitrifying bacteria was fast and efficiently established by bio-augmentation of activated sludge with Thiobacillus denitrificans. The stoichiometry of the process and the key factors, i.e. N/S ratio, that enable combined sulfide and nitrogen removal, were determined. An optimum N/S ratio of 1 (100% nitrate removal without nitrite formation and low thiosulfate concentrations in the effluent) has been obtained during reactor operation with thiosulfate at a nitrate loading rate (NLR) of 17.18 mmol N L(-1) d(-1). Complete nitrate and sulfide removal was achieved during reactor operation with sulfide at a NLR of 7.96 mmol N L(-1) d(-1) and at N/S ratio between 0.8 and 0.9, with oxidation of sulfide to sulfate. Complete nitrate removal while working at nitrate limiting conditions could be achieved by sulfide oxidation with low amounts of oxygen present in the influent, which kept the sulfide concentration below inhibitory levels.  相似文献   

9.
In this study, the effects of pH, CO(2), and flow pattern on the performance of a biotrickling filter (BTF) packed with plastic Pall rings and treating a H(2)S-polluted waste gas were investigated to establish the optimum operating conditions and design criteria. The CO(2) concentration had no effect on the biodegradation at H(2)S concentrations below 50 ppm. In the range of 50-127 ppm H(2)S, CO(2) concentrations between 865 and 1,087 ppm enhanced H(2)S removal, while higher concentrations of 1,309-4,009 ppm CO(2) slightly inhibited H(2)S removal. The co-current flow BTF presented the advantage of a more uniform H(2)S removal and biomass growth in each section than the counter-current flow BTF. Examination of the pH-effect in the range of pH 2.00-7.00 revealed optimal activity for autotrophs at pH 6.00. Under optimal conditions, the elimination capacity reached 31.12 g H(2)S/m(3)/h with a removal efficiency exceeding 97%. In the present research, autotrophic biomass was developed in the BTF, performing both a partial oxidization of H(2)S to elemental sulfur and a complete oxidization to sulfate, which is favorable from an environmental point of view. Results showed that around 60% of the sulfide concentration fed to the reactor was transformed into sulfate. Such autotrophic trickling filters may present other advantages, including the fact that they do not release any CO(2) to the atmosphere. Besides, the limited growth of autotrophs avoids potential clogging problems. Experimental performance data were compared with data from a mathematical model. Comparisons showed that the theoretical model was successful in predicting the performance of the biotrickling filter.  相似文献   

10.
The objective of this research was to evaluate several factors affecting the performance of a two-stage treatment system employing methane-oxidizing bacteria for trichloroethylene (TCE) biodegradation. The system consists of a completely mixed growth reactor and a plug-flow transformation reactor in which the TCE is cometabolized. Laboratory studies were conducted with continuous growth reactors and batch experiments simulating transformation reactor conditions. Performance was characterized in terms of TCE transformation capacity (T(C), g TCE/g cells), transformation yield (T(Y), g TCE/g CH(4)), and the rate coefficient ratio k(TCE)/K(S,TCE) (L/mg-d). The growth reactor variables studied were solids retention time (SRT) and nutrient nitrogen (N) concentration. Formate and methane were evaluated as potential transformation reactor amendments. Comparison of cultures from 2- and 8-day SRT (nitrogen-limited) growth reactors indicated that there was no significant effect of growth reactor SRT or nitrogen availability on T(C) or T(Y), but N-limited conditions yielded higher k(TCE)/K(S,TCE). The TCE cometabolic activity of the 8-day SRT, N-limited growth reactor culture varied significantly during a 7-year period of operation. The T(C) and T(Y) of the resting cells increased gradually to levels a factor of 2 higher than the initial values. The reasons for this increase are unknown. Formate addition to the transformation reactor gave higher T(C) and T(Y) for 2-day SRT growth reactor conditions and significantly lower T(C), T(Y), and k(TCE)/K(S,TCE) for 8-day SRT N-limited conditions. Methane addition to the transformation reactor inhibited TCE cometabolism at low TCE concentrations and enhanced TCE cometabolism at high TCE concentrations, indicating that the TCE cometabolism in the presence of methane does not follow simple competitive inhibition kinetics. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 650-659, 1997.  相似文献   

11.
Toluene biofiltration by the fungus Scedosporium apiospermum TB1   总被引:5,自引:0,他引:5  
The performance of biofilters inoculated with the fungus Scedosporium apiospermum was evaluated. This fungus was isolated from a biofilter which operated with toluene for more than 6 months. The experiments were performed in a 2.9 L reactor packed with vermiculite or with vermiculite-granular activated carbon as packing material. The initial moisture content of the support and the inlet concentration of toluene were 70% and 6 g/m3, respectively. As the pressure drop increased from 5-40 mm H2O a strong initial growth was observed. Stable operation was maintained for 20 days with a moisture content of 55% and a biomass of 33 mg biomass/g dry support. These conditions were achieved with intermittent addition of culture medium, which permitted a stable elimination capacity (EC) of 100 g/m3(reactor)h without clogging. Pressure drop across the bed and CO2 production were related to toluene elimination. Measurement of toluene, at different levels of the biofilter, showed that the system attained higher local EC (200 g/m3(r)h) at the reactor outlet. These conditions were related to local humidity conditions. When the mineral medium was added periodically before the EC decreases, EC of approximately 258 g/m3(r)h were maintained with removal efficiencies of 98%. Under these conditions the average moisture content was 60% and 41 mg biomass/g dry support was produced. No sporulation was observed. Evaluation of bacterial content and activities showed that the toluene elimination was only due to S. apiospermum catabolism.  相似文献   

12.
Bacterial oxidation of sulphide under denitrifying conditions   总被引:11,自引:0,他引:11  
Anoxic H2S oxidation under denitrifying conditions produced sulphur and sulphate in almost equal proportions by an isolated Thiobacillus denitrificans. Under nitrate reducing conditions the rate of sulphide oxidation was approximately 0.9 g sulphide/g biomass h. Nitrate was reduced to nitrite and accumulated during sulphide oxidation. Above 100 mg nitrite/l, the sulphide oxidation rate declined and at 500 mg/l it was totally arrested. The optimum pH for the anoxic sulphide oxidation was around 7.5. Concentrations of sulphate 1500 mg/l and acetate 400 mg/l had no effect on anoxic sulphide oxidation.  相似文献   

13.
Growth energetics of the acetic acid bacterium Acetobacter pasteurianus were studied with aerobic, ethanol-limited chemostat cultures. In these cultures, production of acetate was negligible. Carbon limitation and energy limitation were also evident from the observation that biomass concentrations in the cultures were proportional to the concentration of ethanol in the reservoir media. Nevertheless, low concentrations of a few organic metabolites (glycolate, citrate, and mannitol) were detected in culture supernatants. From a series of chemostat cultures grown at different dilution rates, the maintenance energy requirements for ethanol and oxygen were estimated at 4.1 mmol of ethanol (middot) g of biomass(sup-1) (middot) h(sup-1) and 11.7 mmol of O(inf2) (middot) g of biomass(sup-1) (middot) h(sup-1), respectively. When biomass yields were corrected for these maintenance requirements, the Y(infmax) values on ethanol and oxygen were 13.1 g of biomass (middot) mol of ethanol(sup-1) and 5.6 g of biomass (middot) mol of O(inf2)(sup-1), respectively. These biomass yields are very low in comparison with those of other microorganisms grown under comparable conditions. To investigate whether the low growth efficiency of A. pasteurianus might be due to a low gain of metabolic energy from respiratory dissimilation, (symbl)H(sup+)/O stoichiometries were estimated during acetate oxidation by cell suspensions. These experiments indicated an (symbl)H(sup+)/O stoichiometry for acetate oxidation of 1.9 (plusmn) 0.1 mol of H(sup+)/mol of O. Theoretical calculations of growth energetics showed that this low (symbl)H(sup+)/O ratio adequately explained the low biomass yield of A. pasteurianus in ethanol-limited cultures.  相似文献   

14.
As an alternative to the current disposal technologies for waste sulfuric acid, a new combination of recycling processes was developed. The strong acid (H(2)SO(4)) is biologically converted with the weak acid (CH(3)COOH) into two volatile weak acids (H(2)S, H(2)CO(3)) by sulfate-reducing bacteria. The transformation is possible without prior neutralization of the sulfuric acid. The microbially mediated transformation can be followed by physiochemical processes for the further conversion of the H(2)S.The reduction of sulfate to H(2)S is carried out under carbon-limited conditions at pH 7.5 to 8.5. A fixed-bed biofilm column reactor is used in conjunction with a separate gas-stripping column which was installed in the recycle stream. Sulfate, total sulfide, and the carbon substrate (in most cases acetate) were determined quantitatively. H(2)S and CO(2) are continually removed by stripping with N(2). Optimal removal is achieved under pH conditions which are adjusted to values below the pK(a)-values of the acids. The H(2)S concentration in the stripped gas was 2% to 8% (v/v) if H(2)SO(4) and CH(3)COOH are fed to the recycle stream just before the stripping column.Microbiol conversion rates of 65 g of sulfate reduced per liter of bioreactor volume per day are achieved and bacterial conversion efficiencies for sulfate of more than 95% can be maintained if the concentration of undissociated H(2)S is kept below 40 to 50 mg/L. Porous glass spheres, lava beads, and polyurethane pellets are useful matrices for the attachment of the bacterial biomass. Theoretical aspects and the dependence of the overall conversion performance on selected process parameters are illustrated in the Appendix to this article. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
A PC-based machine vision system has been used to continuously monitor changes in biomass concentration and to control the undesirable production of colloidal elemental sulfer (a reactor upset condition due to an excessive concentration of inhibitory sulfide substrate) in a bioreactor containing Thiobacillus denitrificans. A field of view of a video camera was established which contained regions of different background lighting. Mean values of the distribution of red, green, and blue intensity components within corresponding regions of a digital image image captured from the camera were used to monitr color changes associated with changes in biomass concentration, and to determine if the reactor was in an upset condition. The ration of red to blue intensity components was an important parameter in detecting the formatin of an elemental sulfur precipitant. Using a stepper motor-driven pressure regulator, intelligent process control was performed by altering the hydrogen sulfide feed flow rate setpoint on the vision system measurements.  相似文献   

16.
脱氮硫杆菌特异引物/探针的设计和评价   总被引:2,自引:0,他引:2  
自脱氮硫杆菌(Thiobacillus denitrificans)16S rRNA基因V3可变区中发现一条27 bp的特异序列, 以该序列为反向引物, 对高效同步脱硫反硝化系统污泥DNA进行了温度梯度PCR扩增和基因文库构建, 结果证实了该引物的高度专一性。应用该探针在去离子甲酰胺和NaCl的浓度分别为35%和100 mmol/L, 杂交/洗脱温度为48°C条件下对污泥样品杂交得到较好的阳性结果, 软件分析表明脱氮硫杆菌在污泥中约占15%。脱氮硫杆菌专一性引物/探针的提出, 将为不同生态环境中该种微生物的时空分布、结构动态以及实时定量等研究提供分子生物学工具。  相似文献   

17.
Growth of Aeropyrum pernix, the first reported aerobic neutrophilic hyperthermophilic archaeon, was investigated under different cultivation parameters. Different sources of seawater, pH, and the cultivation methods were tested with the aim to improve the biomass production. A 1-L glass flask fitted with a condenser and air diffuser was used as a bioreactor. The optimum conditions for maximizing A. pernix biomass were obtained when Na2S2O3.5H2O (1 g/L) with added marine broth 2216 at pH 7.0 (20 mmol HEPES buffer/L) was used as a growing medium in a 1-L flask. The biomass production was 0.45 g dry cell mass/L in 40 h under the optimum conditions, which is more than the 0.42 g dry cell mass/L in 60 h previously obtained.  相似文献   

18.
The present study focuses on the exploitation of sweet sorghum biomass as a source for hydrogen and methane. Fermentative hydrogen production from the sugars of sweet sorghum extract was investigated at different hydraulic retention times (HRT). The subsequent methane production from the effluent of the hydrogenogenic process and the methane potential of the remaining solids after the extraction process were assessed as well. The highest hydrogen production rate (2550 ml H(2)/d) was obtained at the HRT of 6h while the highest yield of hydrogen produced per kg of sorghum biomass was achieved at the HRT of 12h (10.4l H(2)/kg sweet sorghum). It has been proved that the effluent from the hydrogenogenic reactor is an ideal substrate for methane production with approximately 29l CH(4)/kg of sweet sorghum. Anaerobic digestion of the solid residues after the extraction process yielded 78l CH(4)/kg of sweet sorghum. This work demonstrated that biohydrogen production can be very efficiently coupled with a subsequent step of methane production and that sweet sorghum could be an ideal substrate for a combined gaseous biofuels production.  相似文献   

19.
High efficiency of NH3 and H2S removal from waste gases was achieved by the biotrickling filter. Granular activated carbon (GAC), inoculated with Arthrobacter oxydans CH8 for NH3 removal and Pseudomonas putida CH11 for H2S removal, was used as packing material. Under conditions in which 100% H2S was removed, extensive tests to eliminate high concentrations of NH3 emission-including removal characteristics, removal efficiency, and removal capacity of the system-were performed. The results of the Bed Depth Service Time (BDST) experiment suggested that physical adsorption of NH3 gas by GAC was responsible for the first 10 days, after which NH3 gas was biodegraded by inoculated microorganisms. The dynamic steady state between physical adsorption and biodegradation was about two weeks. After the system achieved equilibrium, the BAC biotrickling filter exhibited high adaptation to shock loading, elevated temperature, and flow rate. Greater than 96% removal efficiency for NH3 was achieved during the 140-day operating period when inlet H2S loading was maintained at 6.25 g-S/m3/h. During the operating period, the pH varied between 6.5 and 8.0 after the physical adsorption stage, and no acidification or alkalinity was observed. The results also demonstrated that NH3 removal was not affected by the coexistence of H2S while gas retention time was the key factor in system performance. The retention time of at least 65 s is required to obtain a greater than 95% NH3 removal efficiency. The critical loading of NH3 for the system was 4.2 g-N/m3/h, and the maximal loading was 16.2 g-N/m3/h. The results of this study could be used as a guide for further design and operation of industrial-scale systems.  相似文献   

20.
The aim of the present study was to assess the impact of adding cultures of Thiobacillus denitrificans and Thiomicrospira denitrificans to two upflow anaerobic sludge bed (UASB) reactors: one inoculated with granular sludge and the other filled only with activated carbon (AC). The performances of the bioreactors and the changes in biomass were compared with a non-bioaugmented control UASB reactor inoculated with granular sludge. The reactors inoculated with granular sludge achieved efficiencies close to 90% in nitrate and thiosulfate removal for loading rates as high as 107 mmol-NO3 -/l per day and 68 mmol-S2O3 2-/l per day. Bioaugmentation with Tb. denitrificans and Tm. denitrificans did not enhance the efficiency compared to that achieved with non-bioaugmented granular sludge. The loading rates and efficiencies were 30-40% lower in the AC reactor. In all the reactors tested, Tb. denitrificans became the predominant species. The results strongly suggest that this bacterium was responsible for denitrification and sulfoxidation within the reactors. We additionally observed that granules partially lost their integrity during operation under chemolithoautotrophic conditions, suggesting limitations for long-term operation if bioaugmentation is applied in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号