首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydraulic conductivity of the lateral walls of early metaxylem vessels (Lpx in m · s–1 · MPa–1) was measured in young, excised roots of maize using a root pressure probe. Values for this parameter were determined by comparing the root hydraulic conductivities before and after steam-ringing a short zone on each root. Killing of living tissue virtually canceled its hydraulic resistance. There were no suberin lamellae present in the endodermis of the roots used. The value of Lpx ranged between 3 · 10–7 and 35 · 10–7 m · s–1 · MPa–1 and was larger than the hydraulic conductivity of the untreated root (Lpr = 0.7 · 10–7 to 4.0 · 10–7 m · s–1 · MPa–1) by factor of 3 to 13. Assuming that all flow through the vessel walls was through the pit membranes, which occupied 14% of the total wall area, an upper limit of the hydraulic conductivity of this structure could be given(Lppm=21 · 10–7 to 250 · 10–7 m · s–1 · MPa–1). The specific hydraulic conductivity (Lpcw) of the wall material of the pit membranes (again an upper limit) ranged from 0.3 · 10–12 to 3.8 · 10–12 m2 · s–1 · MPa–1 and was lower than estimates given in the literature for plant cell walls. From the data, we conclude that the majority of the radial resistance to water movement in the root is contributed by living tissue. However, although the lateral walls of the vessels do not limit the rate of water flow in the intact system, they constitute 8–31% of the total resistance, a value which should not be ignored in a detailed analysis of water flow through roots.Abbreviatations and Symbols kwr (T 1 2/W ) rate constant (half-time) of water exchange across root (s–1 or s, respectively) - Lpcw specific hydraulic conductivity of wall material (m2 · s–1 · MPa–1) - Lppm hydraulic conductivity of pit membranes (m · s –1 · MPa–1) - Lpr hydraulic conductivity of root (m · s–1 · MPa–1) - Lpx lateralhydraulic conductivity of walls of root xylem (m · s –1 · MPa–1) This research was supported by a grant from the Bilateral Exchange Program funded jointly by the Natural Sciences and Engineering Research Council of Canada and the Deutsche Forschungsgemeinschaft to C.A.P., and by a grant from the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 137, to E.S. The expert technical help of Mr. Burkhard Stumpf and the work of Ms. Martina Murrmann and Ms. Hilde Zimmermann in digitizing chart-recorder strips is gratefully acknowledged.  相似文献   

2.
The effects of anoxia on water and solute transport across excised roots of young maize plants (Zea mays L. cv. Tanker) grown hydroponically have been studied. With the aid of the root pressure probe, root pressure (Pr), root hydraulic conductivity (Lpr), and root permeability (Psr), and reflection ( sr) coefficients were measured using potassium nitrate (a typical nutrient salt) and sodium nitrate (an atypical nutrient salt) as solutes. During a period of 10–15 h, anaerobic treatment (0.0–0.2 g O2·m-3 in root medium) caused a decrease of root pressure by 0.01–0.28 MPa (by 10–80% of original root pressure) after a short transient increase. For a time period of 5 h, the decrease in the stationary root pressure was not reversible. Under anaerobic conditions, roots still behaved like osmometers and were not leaky. The root hydraulic conductivity measured in osmotic experiments (osmotic solute: NaNO3) was smaller by one to two orders of magnitude than that measured in the presence of hydrostatic gradients. Both the osmotic and hydrostatic hydraulic conductivity decreased during anaerobic treatment by 28 and 44%, respectively, at a constant reflection coefficient of the solutes ( sr=0.3–1.0). As with root pressure, changes in root permeability to water and solutes were not reversible within 5 h. Under aerobic conditions and at low external concentrations (31–59 mOsmol·kg-1), osmotic response curves were monophasic for KNO3, i.e. there was no passive uptake of solutes. Response curves became biphasic at higher concentrations (100–150 mOsmol·kg-1)- For NaNO3, response curves were biphasic at all concentrations. Presumably, this pattern was a consequence of the fact that potassium had already accumulated in the xylem. During anoxia, accumulation of potassium in the xylem was reduced, and biphasic responses were also obtained at lower potassium concentrations applied to the medium. The results are discussed in terms of a pump/leak model of the root in which anoxia affects both the active ion pumping and the permeability of the root to nutrient salts (leakage). The effects of anaerobiosis on the passive transport properties of the root (Lpr, Psr, sr) are in line with the recently proposed composite transport model of the root.Abbreviations and Symbols Ar root surface area - Lpr root hydraulic conductivity - Lprh hydrostatic hydraulic conductivity of root - Lpro osmotic hydraulic conductivity of root - Pr root pressure - Psr permeability coefficient of root - sr reflection coefficient of root The authors thank Mr. Walter Melchior for the curve-fitting program used to work out Lprh values from root pressure relaxations and Mr. Mohammad Hajirezai (Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth) for making the ATP measurements. The assistance of Mrs. Libuse Badewitz in making the drawings and the technical help of Mr. Burkhard Stumpf are also gratefully acknowledged.  相似文献   

3.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   

4.
S. K. Hillman  M. B. Wilkins 《Planta》1982,155(3):267-271
Time-lapse photography and light microscopy were used to determine whether or not sedimentation of the newly developed amyloplasts in the apex of Zea mays L. roots occurred at the time when geotropic responsiveness reappears following removal of the cap. All decapped roots exhibiting a geotropic response had some amyloplast sedimentation in the apical cortical cells. Exposing decapped roots to a centrifugal acceleration of 25 g for 4 h showed that amyloplasts of a similar size and development were not displaced within the cytoplasm when this treatment began 12 h after decapping, whereas displacement did occur when the treatment began 24 h after decapping. This finding indicates the occurrence of a change in the physical characteristics of the cytoplasm between 12 h and 24 h after removing of the cap, which allows amyloplast movement and thus restores gravity perception.  相似文献   

5.
Spray  Clive  Phinney  Bernard O.  Gaskin  Paul  Gilmour  Sarah J.  MacMillan  Jake 《Planta》1984,160(5):464-468
[13C, 3H]Gibberellin A20 (GA20) has been fed to seedlings of normal (tall) and dwarf-5 and dwarf-1 mutants of maize (Zea mays L.). The metabolites from these feeds were identified by combined gas chromatography-mass spectrometry. [13C, 3H]Gibberellin A20 was metabolized to [13C, 3H]GA29-catabolite and [13C, 3H]GA1 by the normal, and to [13C, 3H]GA29 and [13C, 3H]GA1 by the dwarf-5 mutant. In the dwarf-1 mutant, [13C, 3H]GA20 was metabolized to [13C, 3H]GA29 and [13C, 3H]GA29-catabolite; no evidence was found for the metabolism of [13C, 3H]GA20 to [13C, 3H]GA1. [13C, 3H]Gibberellin A8 was not found in any of the feeds. In all feeds no dilution of 13C in recovered [13C, 3H]GA20 was observed. Also in the dwarf-5 mutant, the [13C]label in the metabolites was apparently undiluted by endogenous [13C]GAs. However, dilution of the [13C]label in metabolites from [13C, 3H]GA20 was observed in normal and dwarf-1 seedlings. The results from the feeding studies provide evidence that the dwarf-1 mutation of maize blocks the conversion of GA20 to GA1.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - RP reverse phase  相似文献   

6.
Randy Moore  James D. Smith 《Planta》1985,164(1):126-128
The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g–1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g–1 FW,±standard deviation): w-3, 279±43; vp-5, 237±26; vp-7, 338±61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necesary for positive gravitropism by primary roots of Z. mays.Abbreviation ABA abscisic acid  相似文献   

7.
Karahara I  Ikeda A  Kondo T  Uetake Y 《Planta》2004,219(1):41-47
The Casparian strip in the endodermis of vascular plant roots appears to play an important role in preventing the influx of salts into the stele through the apoplast under salt stress. The effects of salinity on the development and morphology of the Casparian strip in primary roots of maize (Zea mays L.) were studied. Compared to the controls, the strip matured closer to the root tip with increase in the ambient concentration of NaCl. During growth in 200 mM NaCl, the number and the length of the endodermal cells in the region between the root tip and the lowest position of the endodermal strip decreased, as did the apparent rate of production of cells in single files of endodermal cells (the rate of cell formation being equal to the rate at which cells are lost from the meristem). The estimated time required for an individual cell to complete the formation of the strip after generation of the cell in the presence of 200 mM NaCl was not very different from that required in controls. Thus, salinity did not substantially affect the actual process of formation of the strip in individual cells. The radial width of the Casparian strip, a morphological parameter that should be related to the effectiveness of the strip as a barrier, increased in the presence of 200 mM NaCl. The mean width of the lignified region was 0.92 m in distilled water and 1.33 m in 200 mM NaCl at the lowest position of the strip. The mean width of the strip relative to that of the radial wall at this position was significantly greater after growth in the presence of 200 mM NaCl than in the controls, namely, 20.5% in distilled water and 33.9% in 200 mM NaCl. These observations suggest that the function of the strip is enhanced under salt stress.  相似文献   

8.
D. M. R. Harvey 《Planta》1985,165(2):242-248
Zea mays is a salt-sensitive crop species which in saline (100 mol m-3 NaCl) conditions suffers considerable growth reduction correlated with elevated Na+ and Cl- concentration within the leaves. To increase understanding of the regulation of ion uptake and transport by the roots in saline conditions, ion concentrations within individual root cortical cells were determined by X-ray microanalysis. There was variation in Na+, K+ and Cl- distributions among individual cells, which could not be correlated with their spatial position in the roots. Generally, however, in response to saline growth conditions (100 mol m3 NaCl) Na+ and Cl- were mostly localized in the vacuoles, although their concentrations were also sometimes increased in the cytoplasm and cell walls. The concentration of K+ in the cytoplasm was usually maintained at a level (mean 79 mol m-3) compatible with the biochemical functions ascribed to this ion.Abbreviation (T)AEM (Transmission) analytical electron microscopy  相似文献   

9.
10.
S. J. Neill  R. Horgan  A. F. Rees 《Planta》1987,171(3):358-364
Seed development was investigated in kernels of developing wild-type and viviparous (vp-1) Zea mays L. Embryos and endosperm of wild-type kernels began to dehydrate at approx. 35 d after pollination (DAP); viviparous embryos did not desiccate but accumulated fresh weight via coleoptile growth in the caryopses. Concentrations of endogenous abscisic acid (ABA) in the embryo were relatively high early in development, being approx. 150 ng·g-1 fresh weight at 20 DAP. The ABA content declined thereafter, falling to approx. 50 ng·g-1 at 30 DAP. Endosperm ABA content was always low, being less than 20 ng·g-1. There were no differences between wild-type and vp-1 tissues. Immature kernels did not germinate when removed from the ear until late in development. The ability to germinate was correlated with decreasing moisture content in the endosperm at the time of removal; premature drying of immature kernels resulted in greatly increased germination following imbibition. Excised embryos germinated precociously when removed from the endosperm as early as 25 DAP. Such germination could be prevented by treatment with 10-5 M ABA or by lowering the solute potential (s) of the medium with 0.3 M mannitol. Treatment of excised embryos with ABA led to internal ABA concentrations comparable to those in embryos in which germination was inhibited in situ. Mannitol treatment did not have this effect, although water-deficit stress of excised embryos resulted in substantial ABA production. Germinated vp-1 embryos were less sensitive to growth inhibition by ABA or mannitol than germinating wild-type embryos. The vp-1 seedlings were not wilty and their transpiration rates were reduced in response to ABA or water shortage.Abbreviations and symbols ABA abscisic acid - DAP days after pollination - FW fresh weight - vp-1 viviparous genotype - s solute potential  相似文献   

11.
Merten Jabben 《Planta》1980,149(1):91-96
The phytochrome system is analyzed in light-grown maize (Zea mays L.) plants, which were prevented from greening by application of the herbicide SAN 9789. The dark kinetics of phytochrome are not different in the first, second or third leaf. It is concluded that in light-grown maize plants phytochrome levels are regulated by Pr formation and Pfr and Pr destruction, rather than by PfrPr dark reversion. Pr undergoes destruction after it has been cycled through Pfr. The consequences of this Pr destruction on the phytochrome system are discussed.Abbreviations SAN 9789 4-chloro-5-(methylamino)-2-(,,-trifluoro-m-tolyl)-3(2H) pyridazinone - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot Pfr+Pr  相似文献   

12.
Peter M. schildwacht 《Planta》1989,177(2):178-184
Leaf-elongation rates of Zea mays L. and Phaseolus vulgaris L. were measured in plants grown for 4 d in nutrient solution bubbled with N2 and in soil-grown waterlogged Phaseolus plants. Leaf water potential in both species was lower 3–4h after replacing aeration by N2-bubbling. In Zea, the water potential after 24 h or more was the same in control plants and plants with N2 treatment. In Phaseolus, the water potential of inundated plants and plants with N2 treatment was always lower than those of control plants. The leaf-elongation rate of both species was always lower in plants treated with N2, especially during light periods. In Zea, the elongation rate was lowest in the first 24 h, whilst in Phaseolus it was lowest on the last (fourth) day of treatment. There was no difference between N2 treatment and inundation experiments. It is concluded that during the first hours of treatment the leaf-elongation rate was reduced as a consequence of the lower water potential. Thereafter, however, elongation rates were lower than could be expected on the basis of the plant's water relations.Abbreviations LER leaf elongation rate - PEG-200 polyethylene-glycol 200 - RWC relative water content  相似文献   

13.
Roni Aloni  Tal Plotkin 《Planta》1985,163(1):126-132
The regenerative differentiation of xylem, both around a wound in the stem and at the root junction was studied in seedlings of maize. The regeneration of vessels around a wound was very small, being limited to the very young internodes and sharply declining basipetally. There were more regenerative vessel elements and they differentiated faster above the wound than below it. The regenerative vessel elements around the wound were characterized by helical or annular pattern of secondary wall thickenings. Wounding also resulted in the development of additional vascular anastomoses in the leaf immediately above the wound, and in differentiation of discontinuous vessels in adjacent bundles. Regenerative vessel elements were very common where the adventitious roots connected with the stem internodes, and exhibited pitted or reticulated secondary wall thickenings.  相似文献   

14.
The composition of suberin and lignin in endodermal cell walls (ECWs) and in rhizodermal/hypodermal cell walls (RHCWs) of developing primary maize (Zea mays L.) roots was analysed after depolymerisation of enzymatically isolated cell wall material. Absolute suberin amounts related to root length significantly increased from primary ECWs (Casparian strips) to secondary ECWs (suberin lamella). During further maturation of the endodermis, reaching the final tertiary developmental state characterised by the deposition of lignified secondary cell walls (u-shaped cell wall deposits), suberin amounts remained constant. Absolute amounts of lignin related to root length constantly increased throughout the change from primary to tertiary ECWs. The suberin of Casparian strips contained high amounts of carboxylic and 2-hydroxy acids, and differed substantially from the suberin of secondary and tertiary ECWs, which was dominated by high contents of ω-hydroxycarboxylic and 1,ω-dicarboxylic acids. Furthermore, the chain-length distribution of suberin monomers in primary ECWs ranged from C16 to C24, whereas in secondary and tertiary ECWs a shift towards higher chain lengths (C16 to C28) was observed. The lignin composition of Casparian strips (primary ECWs) showed a high syringyl content and was similar to lignin in secondary cell walls of the tertiary ECWs, whereas lignin in secondary ECWs contained higher amounts of p-hydroxyphenyl units. The suberin and lignin compositions of RHCWs rarely changed with increasing root age. However, compared to the suberin in ECWs, where C16 and C18 were the most prominent chain lengths, the suberin of RHCWs was dominated by the higher chain lengths (C24 and C26). The composition of RHCW lignin was similar to that of secondary-ECW lignin. Using lignin-specific antibodies, lignin epitopes were indeed found to be located in the Casparian strip. Surprisingly, the mature suberin layers of tertiary ECWs contained comparable amounts of lignin-like epitopes. Received: 19 August 1998 / Accepted: 3 February 1999  相似文献   

15.
Roots of Zea mays were maintained in a vertical orhorizontal position and the local elongation rate and H+ fluxes were measured using Sephadex beads containing a pH indicator. When the roots were kept horizontally, the growth of the lower side was strongly inhibited and that of the upper side slightly stimulated as compared with vertical roots. The H+ extrusion, which was greatest in the elongation zone, was strongly inhibited on the lower side and slightly stimulated on the upper side as compared with vertical roots.  相似文献   

16.
S. H. Russell  R. F. Evert 《Planta》1985,164(4):448-458
The vascular system of the Zea mays L. leaf consists of longitudinal strands interconnected by transverse bundles. In any given transverse section the longitudinal strands may be divided into three types of bundle according to size and structure: small, intermediate, large. Virtually all of the longitudinal strands intergrade structurally however, from one bundle type to another as they descend the leaf. For example, all of the strands having large-bundle anatomy appear distally as small bundles, which intergrade into intermediates and then large bundles as they descend the leaf. Only the large bundles and the intermediates that arise midway between them extend basipetally into the sheath and stem. Most of the remaining longitudinal strands of the blade do not enter the sheath but fuse with other strands above and in the region of the blade joint. Despite the marked decrease in number of longitudinal bundles at the base of the blade, both the total and mean cross-sectional areas of sieve tubes and tracheary elements increase as the bundles continuing into the sheath increase in size. Linear relationships exist between leaf width and total bundle number, and between cross-sectional area of vascular bundles and both total and mean cross-sectional areas of sieve tubes and tracheary elements.  相似文献   

17.
Turgor pressure was measured in cortical cells and in xylem elements of excised roots and roots of intact plants of Zea mays L. by means of a cell pressure probe. Turgor of living and hence not fully differentiated late metaxylem (range 0.6–0.8 MPa) was consistently higher than turgor of cortical cells (range 0.4–0.6 MPa) at positions between 40 and 180 mm behind the root tip. Closer to the tip, no turgor difference between the cortex and the stele was measured. The turgor difference indicated that late-metaxylem elements may function as nutrient-storage compartments within the stele. Excised roots were attached to the root pressure probe to precisely manipulate the xylem water potential. Root excision did not affect turgor of cortical cells for at least 8 h. Using the cell pressure probe, the propagation of a hydrostatic pressure change effected by the root pressure probe was recorded in mature and immature xylem elements at various positions along the root. Within seconds, the pressure change propagated along both early and late metaxylems. The half-times of the kinetics, however, were about five times smaller for the early metaxylem, indicating they are likely the major pathway of longitudinal water flow. The hydraulic signal dissipated from the source of the pressure application (cut end of the root) to the tip of the root, presumably because of radial water movement along the root axis. The results demonstrate that the water status of the growth zone and other positions apical to 20 mm is mainly uncoupled from changes of the xylem water potential in the rest of the plant.Abbreviations and Symbols CPP cell pressure probe - EMX early metaxylem - LMX Late metaxylem - Pc cell turgor - Pr root pressure - RPP root pressure probe - t1/2,c half-time of water exchange across a single cell - t1/2 half-time of water exchange across multiple cells We thank Antony Matista for his expert assistance in the construction and modification of instruments. The work was supported by grant DCB8802033 from the National Science Foundation and grant 91-37100-6671 from USDA, and by the award of a Feodor Lynen-Fellowship from the Alexander von Humboldt-Foundation (Germany) to J.F.  相似文献   

18.
Tubular extensions of the plasmalemma in leaf cells of Zea mays L.   总被引:1,自引:1,他引:0  
Leaf tissues of Zea mays were examined with a transmission electron microscope and a high-voltage electron microscope. Tubular extensions (invaginations) of the plasmalemma were found in vascular parenchyma cells and thick-walled, lateformed sieve elements of intermediate and small veins, and in epidermal, mesophyll, and sheath cells of all leaves examined. No continuity seems to exist between the tubules and other cellular membranes.  相似文献   

19.
Osmotic responses of maize roots   总被引:16,自引:0,他引:16  
Water and solute relations of excised seminal roots of young maize (Zea mays L) plants, have been measured using the root pressure probe. Upon addition of osmotic solutes to the root medium, biphasic root pressure relaxations were obtained as theoretically expected. The relaxations yielded the hydraulic conductivity Lp r) the permeability coefficient (P sr), and the reflection coefficient (σ sr) of the root. Values of Lp r in these experiments were by nearly an order of magnitude smaller than Lp r values obtained from experiments where hydrostatic pressure gradients were used to induce water flows. The value of P sr was determined for nine different osmotica (electrolytes and nonelectrolytes) which resulted in rather variable values (0.1·10-8–1.7·10-8m·s-1). The reflection coefficient σ sr of the same solutes ranged between 0.3 and 0.6, i.e. σ sr was low even for solutes for which cell membranes exhibit a σ s≈1. Deviations from the theoretically expected biphasic responses occured which may have reflected changes of either P sr or of active pumping induced by the osmotic change. The absolute values of Lp r, P sr, and σ sr have been critically examined for an underestimation by unstirred layer effecs. The data indicate a considerable apoplasmic component for radial movement of water in the presence of hydrostatic gradients and also some solute flow byppassing root protoplasts. In the presence of osmotic gradients, however, there was a substantial cell-to-cell transport of water. Cutting experiments demonstrated that the hydraulic resistance for the longitudinal movement of water was much smaller than for radial transport except for the apical ends of the segments (length=5 to 20 mm). The differences in Lp r as well as the low σ sr values suggest that the simple osmometer model of the root with a single osmotic barrier exhibiting nearly semipermeable properties should be extended for a composite membrane model with hydraulic and osmotic barriers arranged in series and in parallel.  相似文献   

20.
Takashi Suzuki  Tadashi Fujii 《Planta》1978,142(3):275-279
The induction by light of geotropic responsiveness in the primary roots of Zea mays L. (cv. Golden Cross Bantam 70) was found to be governed by the all-or-none law. The response was induced by light energies above a threshold value, but the maximal curvature of geo-stimulated roots was constand irrespective of the light energy above that threshold. The action spectrum for this light effect showed a large peak at 650, a small peak at 410, and a shoulder at 663 nm. The effect of red light was not reversed by far-red light. Thus, the geotropic response in Zea roots may not be controlled by phytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号