首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Protein kinase C (PKC) is overexpressed in cancer, including pancreatic cancer, compared with normal tissue. Moreover, PKCα is considered one of the biomarkers for the diagnosis of cancers. In several human cancers, the claudin tight junction molecules are abnormally regulated and are thus promising molecular targets for diagnosis and therapy with Clostridium perfringens enterotoxin (CPE). In order to investigate the changes of tight junction functions of claudins via PKCα activation in pancreatic cancer cells, the well-differentiated human pancreatic cancer cell line HPAC, with its highly expressed tight junction molecules and well-developed barrier function, was treated with the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). Treatment with TPA modified the activity of phosphoPKCα and caused an increase of the Snail family members Snail, Slug and Smad-interacting protein 1 and a decrease of E-cadherin. In HPAC cells treated with TPA, downregulation of claudin-1 and mislocalization of claudin-4 and occludin around the nuclei were observed, together with a decrease in the numbers of tight junction strands and an increase in phosphorylation of claudin-4. The barrier function and the cytotoxicity of CPE were significantly decreased on TPA treatment. All such changes after TPA treatment were prevented by inhibitors of panPKC and PKCα. These findings suggest that, in human pancreatic cancer cells, PKCα activation downregulates tight junction functions as a barrier and as a receptor of CPE via the modification of claudin-1 and −4 during epithelial to mesenchymal transition-like changes. PKCα inhibitors might represent potential therapeutic agents against human pancreatic cancer cells by use of CPE cytotoxicity via claudin-4.  相似文献   

3.
4.
The number of patients with uterine endometrial carcinoma, the cause of which involves sex hormones, has recently been growing rapidly because of increases in life expectancy and obesity. Tight junction proteins claudin-3 and ?4 are receptors of Clostridium perfringens enterotoxin (CPE) and increase during endometrial carcinogenesis. In the present study of normal human endometrial epithelial (HEE) cells and the uterus cancer cell line Sawano, we investigate changes in the expression of tight junction proteins including claudin-3 and ?4, the fence and barrier functions of the tight junction and the cytotoxic effects of CPE by sex hormones. In primary cultured HEE cells, treatment with progesterone (P4) but not estradiol (E2), induced claudin-1, ?3, ?4 and ?7 and occludin, together with the downregulation of the barrier function but not the fence function. In Sawano cells, claudin-3 and ?4 were upregulated by E2 but not by P4, together with a disruption of both the barrier and fence function. In primary cultured HEE cells, claudin-3 and ?4 were localized at the apicalmost regions (tight junction areas) and no cytotoxicity of CPE was observed. In Sawano cells, claudin-3 and ?4 were found not only in the apicalmost regions but also at the basolateral membrane and the cytotoxicity of CPE was enhanced by E2. Thus, tight junctions are physiological regulated by sex hormones in normal HEE cells during the menstrual cycle suggesting that safer and more effective therapeutic methods targeting claudins in uterine cancer can be developed.  相似文献   

5.
Ovarian adenocarcinomas, like human ovarian surface epithelial cells, form functional tight junctions. Tight junction molecules claudin-3 and claudin-4, which are the receptors of Clostridium perfringens enterotoxin (CPE), are abnormally upregulated in epithelial ovarian cancers of all subtypes including, mucinous cystadenocarcinoma and serous cystadenocarcinoma. Clostridium perfringens enterotoxin may be a novel tumor-targeted therapy for ovarian cancers. In epithelial ovarian cancers, overexpression of epidermal growth factor receptor has been observed and the exogenous ligand EGF induces epithelial-mesenchymal transition in ovarian surface epithelium. Epidermal growth factor (EGF) signaling modulates expression of claudins with changes of fence and barrier functions in various cell types. However, the regulation of tight junctions by EGF in ovarian cancers remains unclear. In the present study, to investigate the mechanisms of the regulation of tight junctions in ovarian cancers, ovarian cancer cell lines mucinous cystadenocarcinoma (MCAS) and serous cystadenocarcinoma (HUOA) were treated with EGF. Epidermal growth factor downregulated claudin-3 in MCAS and claudin-4 in HUOA by inducing degradation of the proteins with changes in structures and functions of tight junctions via the MEK/ERK or PI3K/Akt signaling pathway. In addition, in HUOA but not MCAS, EGF downregulated the cytotoxic effect of CPE via claudin-4. Thus, there were different mechanisms for regulation of claudins by EGF between subtypes of epithelial ovarian cancer cells in vitro. These results indicate that EGF may affect claudins and tight junctional functions in ovarian cancer cells during cancer progression.  相似文献   

6.
The epithelial barrier of the upper respiratory tract, such as that of the nasal mucosa, plays a crucial role in host defense. The epithelial barrier is regulated in large part by the apical-most intercellular junctions, referred to as tight junctions. However, the mechanisms regulating of tight junction barrier in human nasal epithelial cells remain unclear because the proliferation and storage of epithelial cells in primary cultures are limited. In the present study, we introduced the catalytic component of telomerase, the hTERT gene, into primary cultured human nasal epithelial cells and examined the properties of the transfectants, including their expression of tight junctions, compared with primary cultures. The ectopic expression of hTERT in the epithelial cells resulted in adequate growth potential and a longer lifespan of the cells. The properties of the passaged hTERT-transfected cells including tight junctions were similar to those of the cells in primary cultures. The barrier function in the transfectants after treatment with 10% FBS was significantly enhanced with increases of integral tight junction proteins claudin-1 and -4. When the transfectants were treated with TGF-β, which is assosciated with nasal polyposis and chronic rhinosinusitis, upregulation of only claudin-4 was observed, without a change of barrier function. In human nasal epithelial cells, the claudins may be important for barrier function and a novel target for a drug-delivery system. Our results indicate that hTERT-transfected human nasal epithelial cells with an extended lifespan can be used as an indispensable and stable model for studying the regulation of claudins in human nasal epithelium. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports Science, and Technology of Japan, the Ministry of Health, Labor, and Welfare of Japan, Japan Science and Technology Agency, the Akiyama Foundation, and the Long-Range Research Initiative Project of the Japan Chemical Industry Association.  相似文献   

7.
8.
F9 murine embryonal carcinoma cells provide an attractive system for facilitating molecular mechanisms for epithelial morphogenesis, since they have the capability of differentiating into polarized epithelial cells bearing an apical junctional complexes. We previously showed that a specific retinoid X receptor-retinoic acid receptor heterodimer transduced retinoid signals for biogenesis of functional tight junctions in F9 cells (Exp. Cell Res. 263, (2001) 163). In the present study we generated F9 cells expressing doxycycline-inducible hepatocyte nuclear factor (HNF)-4alpha, a nuclear receptor. We herein show that induction of HNF-4alpha initiates differentiation of F9 cells to polarized epithelial cells, in which tight-junction proteins occludin, claudin-6, claudin-7, and ZO-1 are concentrated at the apical-most regions of lateral membranes. Expression of occludin, claudin-6, and claudin-7 was induced in the cells by doxycycline treatment in a dose- and time-dependent manner, in terms of the amount of HNF-4alpha. In contrast, expression levels of ZO-1, ZO-2, E-cadherin, and beta-catenin were not altered by HNF-4alpha. We also demonstrate, by analysis of diffusion of labeled sphingomyelin, that the fence function of tight junctions is achieved by induction of HNF-4alpha. These findings indicate that HNF-4alpha triggers de novo formation of functional tight junctions and establishment of epithelial cell polarity.  相似文献   

9.
10.
Tight junctions (TJs) are the most apical junctional complexes and restrict the fluid flux through the paracellular pathway. In the mammary glands, the tightness of TJs occurs shortly after parturition to prevent the leakage of milk components from the lumen and the loosening of TJs is induced immediately after weaning. Claudins are transmembrane proteins, and their composition at the apical-most regions determines the permeability of TJs. In this study, we investigated the localization and expression patterns of claudin-3 and -4 in the mammary glands around the lactation period because it is unclear how claudins construct mammary TJs in the apical-most regions. Our results showed that claudin-3 and -4 change not only their level of expression but also their localization in the processes of parturition, lactation, and weaning. Claudin-3 was concentrated in the apical-most regions during lactation, whereas claudin-4 gradually decreased at the beginning of lactation and increased drastically immediately after weaning. The qualitative change of claudin-3 was also identified by western blotting analysis as an additional band around the lactation period. In addition, parts of the mammary epithelial cells showed intensive positive reactions to claudin-4 in the lateral membrane and cytoplasm after weaning, concurrently with the involution mammary glands. These results indicate that claudin-3 in the apical-most regions maintains the impermeable TJs during lactation, and claudin-4 contributes to the permeability changes of TJs immediately after parturition and weaning.  相似文献   

11.
Tricellulin (TRIC) is a tight junction protein at tricellular contacts where three epithelial cells meet, and it is required for the maintenance of the epithelial barrier. To investigate whether TRIC is regulated via a c‐Jun N‐terminal kinase (JNK) pathway, human pancreatic HPAC cells, highly expressed at tricellular contacts, were exposed to various stimuli such as the JNK activators anisomycin and 12‐O‐tetradecanoylphorbol 13‐acetate (TPA), and the proinflammatory cytokines IL‐1β, TNFα, and IL‐1α. TRIC expression and the barrier function were moderated by treatment with the JNK activator anisomycin, and suppressed not only by inhibitors of JNK and PKC but also by siRNAs of TRIC. TRIC expression was induced by treatment with the PKC activator TPA and proinflammatory cytokines IL‐1β, TNFα, and IL‐1α, whereas the changes were inhibited by a JNK inhibitor. Furthermore, in normal human pancreatic duct epithelial cells using hTERT‐transfected primary cultured cells, the responses of TRIC expression to the various stimuli were similar to those in HPAC cells. TRIC expression in tricellular tight junctions is strongly regulated together with the barrier function via the JNK transduction pathway. These findings suggest that JNK may be involved in the regulation of tricellular tight junctions including TRIC expression and the barrier function during normal remodeling of epithelial cells, and prevent disruption of the epithelial barrier in inflammation and other disorders in pancreatic duct epithelial cells. J. Cell. Physiol. 225: 720–733, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Constitutive activation of Ras or Ras-mediated signaling pathways is one of the initial steps during tumorigenesis that promotes neoplastic transformation. Recently it was reported that in Ha-Ras overexpressing MDCK cells the tight junction proteins claudin-1, occludin and ZO-1 were absent at cell-cell contact sites but present in the cytoplasm. Inhibition of MEK1 activity recruited all three proteins to the cell membrane leading to a restoration of the tight junction barrier function in MDCK cells. In order to evaluate the relevance of the MEK1 pathway in tight junction regulation in breast cancer cells, we investigated the effect ofMEK1 inhibition on expression of claudin-1, occludin and ZO-1 in natively claudin-1 expressing T47-D cells (low Ras activity), claudin-1 negative MCF-7 cells (elevated Ras activity) as well as two retroviral claudin-1 transduced MCF-7 daughter cell lines with prominent membrane and cytoplasmic claudin-1 dominant homing, respectively. Although we effectively blocked phosphorylation of MAPKs ERK-1 and ERK-2 using the selective MEK1 inhibitor PD98059, no quantitative changes of mRNA or protein levels of claudin-1, occludin and ZO-1 could be detected in all cell lines investigated. Furthermore, immnfluorescence analysis of claudin-1 revealed that inhibition of the MAPK pathway did not alter th e subcellular cytoplasmic distribution of claudin-1 to be more membrane specific. Finally, the diffusion barrier properties of tight junctions as analyzed by transepithelial resistance (TER) or paracellular flux analysis of 3 and 40 kDa dextran of tight junctions were not altered in the claudin-1 positive T47-D and the MCF-7 cell lines. Our findings indicate that the proposed involvement of the Ras-MEK-ERK pathway is likely not involved in the dysregulated tight junction formation in breast tumor cells and indicates that elevated activity of Ras might not be of general importance for the disruption of tight junction structures in breast tumors.  相似文献   

13.
14.
15.
In spite of chemotherapeutic and surgical advances, pancreatic cancer continues to have a dismal prognosis. Metastasis due to tumor cell migration remains the most critical challenge in treating pancreatic cancer, and conventional chemotherapy is rarely curative. In the quest for more novel molecules to fight this disease, we tested the hypothesis that the Pseudomonas aeruginosa quorum sensing signal molecule N-3-oxo-dodecanoyl-L-homoserine lactone (O-DDHSL) would be cytotoxic to and reduce mobility of pancreatic carcinoma cells (Panc-1 and Aspc-1). Results showed a decrease in cell viability from apoptosis, diminished colony formation, and inhibition of migration of the evaluated pancreatic carcinoma cell lines. Also, cell viability decreased in the presence of O-DDHSL when cells were grown in matrigel basement membrane matrix. While messenger RNA for IQGAP-1 decreased in Panc-1 and HPDE cells upon exposure to O-DDHSL, no change was observed in Aspc-1 cells. Cofilin mRNA expression was found to be increased in both HPDE and Panc-1 cells with marginal decrease in Aspc-1 cells. RhoC, a Rho-family GTPase involved in cell motility, increased in the presence of O-DDHSL, suggesting a possible compensatory response to alteration in other migration associated genes. Our results indicate that O-DDHSL could be an effective biomolecule in eukaryotic systems with multimodal function for essential molecular targeting in pancreatic cancer.  相似文献   

16.
17.
Eph receptors and ephrin ligands are widely expressed in epithelial cells and mediate cell-cell interaction. EphA2 is expressed in various cancer tissues and cell lines. Although the mechanism of action of EphA2 is unknown, its expression correlates with progression of the malignant phenotype of cancerous tissues. Here, we have shown that EphA2 modulates the localization and function of claudin-4, a constituent of tight junctions. EphA2 associates with claudin-4 via their extracellular domains. This association, in turn, leads to phosphorylation of the cytoplasmic carboxyl terminus of claudin-4 at Tyr-208. The tyrosine phosphorylation of claudin-4 attenuates association of claudin-4 with ZO-1, decreasing integration of claudin-4 into sites of cell-cell contact and enhancing paracellular permeability. These results indicate that EphA2 moderates the function of tight junctions via phosphorylation of claudin-4.  相似文献   

18.
Claudins (claudin-1 to -18) with four transmembrane domains and two extracellular loops constitute tight junction strands. The peptide toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to claudin-3 and -4, but not to claudin-1 or -2. We constructed claudin-1/claudin-3 chimeric molecules and found that the second extracellular loop of claudin-3 conferred CPE sensitivity on L fibroblasts. Furthermore, overlay analyses revealed that the second extracellular loop of claudin-3 specifically bound to CPE at the K(a) value of 1.0x10(8) M(-1). We concluded that the second extracellular loop is the site through which claudin-3 interacts with CPE on the cell surface.  相似文献   

19.
In the mammalian cochlea, tight junctional strands are visible on freeze fracture images of marginal cells and other inner ear epithelia. The molecular composition of the strial tight junctions is, however, largely unknown. We investigated the expression of integral tight junction-proteins, claudin-1 to -4, and occludin, in stria vascularis of the guinea-pig cochlea, as compared to kidney. Western blot analysis revealed a strong expression of claudin-4 and occludin in strial tissue, and confocal immunofluorescence microscopy demonstrated their presence in the tight junctions of the marginal cells. In addition, a moderate level of claudin-3 and claudin-1 was detected and both were located in the marginal tight junctions. Claudins-1, -3, and -4 are characteristic of epithelia with low paracellular permeability and claudin-4 is known to restrict the passage of cations through epithelial tight junctions. In the marginal cells, these claudins appear to be responsible for the separation of the potassium-rich endolymph from the sodium-rich intrastrial fluid. In contrast, Western blot analysis and confocal microscopy demonstrated that the marginal cell epithelium does not contain claudin-2, which forms a cation-selective pore in tight junctions. Its absence indicates a cation-tight paracellular pathway in the marginal cells.  相似文献   

20.
Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm(2). In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm(2)). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号