首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Azoarcus sp. strain BH72 is an aerobic diazotrophic bacterium that was originally found as an endophyte in Kallar grass. Anticipating that these bacteria are exposed to dissolved O2 concentrations (DOCs) in the nanomolar range during their life cycle, we studied the impact of increasing O2 deprivation on N2 fixation and respiration. Bacteria were grown in batch cultures, where they shifted into conditions of low pO2 upon depletion of O2 by respiration. During incubation, specific rates of respiration (qO2) and efficiencies of carbon source utilization for N2 reduction increased greatly, while the growth rate did not change significantly, a phenomenon that we called "hyperinduction." To evaluate this transition from high- to low-cost N2 fixation in terms of respiratory kinetics and nitrogenase activities at nanomolar DOC, bacteria which had shifted to different gas-phase pO2s in batch cultures were subjected to assays using leghemoglobin as the O2 carrier. As O2 deprivation in batch cultures proceeded, respiratory Km (O2) decreased and Vmax increased. Nitrogenase activity at nanomolar DOC increased to a specific rate of 180 nmol of C2H4 min-1 mg of protein-1 at 32 nM O2. Nitrogenase activity was proportional to respiration but not to DOC in the range of 12 to 86 nM O2. Respiration supported N2 fixation more efficiently at high than at low respiratory rates, the respiratory efficiency increasing from 0.14 to 0.47 mol of C2H4 mol of O2 consumed-1. We conclude that (i) during hyperinduction, strain BH72 used an increasing amount of energy generated by respiration for N2 fixation, and (ii) these bacteria have a high respiratory capacity, enabling them to develop ecological niches at very low pO2, in which they may respire actively and fix nitrogen efficiently at comparatively high rates.  相似文献   

3.
The invasive properties of Azoarcus sp. strain BH72, an endorhizospheric isolate of Kallar grass, on gnotobiotically grown seedlings of Oryza sativa IR36 and Leptochloa fusca (L.) Kunth were studied. Additionally, Azoarcus spp. were localized in roots of field-grown Kallar grass. To facilitate localization and to assure identity of bacteria, genetically engineered microorganisms expressing beta-glucuronidase were also used as inocula. beta-Glucuronidase staining indicated that the apical region of the root behind the meristem was the most intensively colonized. Light and electron microscopy showed that strain BH72 penetrated the rhizoplane preferentially in the zones of elongation and differentiation and colonized the root interior inter- and intracellularly. In addition to the root cortex, stelar tissue was also colonized; bacteria were found in the xylem. No evidence was obtained that Azoarcus spp. could reside in living plant cells; rather, plant cells were apparently destroyed after bacteria had penetrated the cell wall. A common pathogenicity test on tobacco leaves provided no evidence that representative strains of Azoarcus spp. are phytopathogenic. Compared with the control, inoculation with strain BH72 significantly promoted growth of rice seedlings. This effect was reversed when the plant medium was supplemented with malate (0.2 g/liter). N2 fixation was apparently not involved, because the same response was obtained with a nifK mutant of strain BH72, which has a Nif- phenotype. Also, Western blot (immunoblot) analysis of protein extracts from rice seedlings gave no indication that nitrogenase was present. PCR and Western immunoblotting, using primers specific for eubacteria and antibodies recognizing type-specific antigens, respectively, indicated that strain BH72 could colonize rice plants systemically, probably mediated by longitudinal spreading through vessels.  相似文献   

4.
The availability of nitrogen often limits plant growth in terrestrial ecosystems. The only biological reaction counterbalancing the loss of N from soils or ecosystems is biological nitrogen fixation, the enzymatic reduction of N2 to ammonia. Some gramineous crops such as certain Brazilian sugar cane cultivars or Kallar grass can derive a substantial part of the plant nitrogen from biological nitrogen fixation. Our research on grass-associated diazotrophs focuses on endophytic bacteria, microorganisms that multiply and spread inside plants without causing damage of the host plants or conferring an ecological threat to the plant. This review summarizes the current knowledge on the diazotrophic endophyte Azoarcus sp. BH72, which is capable of colonizing the interior of rice roots, one of the globally most important crops.  相似文献   

5.
6.
Azoarcus sp. strain BH72, a mutualistic endophyte of rice and other grasses, is of agrobiotechnological interest because it supplies biologically fixed nitrogen to its host and colonizes plants in remarkably high numbers without eliciting disease symptoms. The complete genome sequence is 4,376,040-bp long and contains 3,992 predicted protein-coding sequences. Genome comparison with the Azoarcus-related soil bacterium strain EbN1 revealed a surprisingly low degree of synteny. Coding sequences involved in the synthesis of surface components potentially important for plant-microbe interactions were more closely related to those of plant-associated bacteria. Strain BH72 appears to be 'disarmed' compared to plant pathogens, having only a few enzymes that degrade plant cell walls; it lacks type III and IV secretion systems, related toxins and an N-acyl homoserine lactones-based communication system. The genome contains remarkably few mobile elements, indicating a low rate of recent gene transfer that is presumably due to adaptation to a stable, low-stress microenvironment.  相似文献   

7.
Endophytic colonization is a very complex process which is not yet completely understood. Molecules exuded by the plants may act as signals which influence the ability of the microbe to colonize the host or survive in the rhizosphere. Here we used the whole genome microarray approach to investigate the response of the diazotrophic model endophyte, Azoarcus sp. strain BH72, to exudates of O.?sativa cv. Nipponbare in order to identify differentially regulated genes. On exposure to exudates, an overall expression of 4.4% of the 3992 protein coding genes of Azoarcus sp. strain BH72 was altered, out of which 2.4% was upregulated and 2.0% was downregulated. Genes with modulated expression included a few whose involvement in plant-microbe interaction had already been established, whereas a large fraction comprised of genes encoding proteins with putative or unknown functions. Mutational analysis of several differentially regulated genes like those encoding a minor pilin PilX, signal transduction proteins containing GGDEF domains and a serine-threonine kinase as a putative component of the type IV secretion system (T6SS), revealed their role in host colonization. Our data suggest that strain BH72 may be primed for the endophytic lifestyle by exudates, as the expression of bacterial genes relevant for endophytic colonization of roots is induced by root exudates.  相似文献   

8.
9.
10.
11.
The unicellular cyanobacterium, Cyanothece sp. BH68K, is capable of performing both oxygen-sensitive nitrogen fixation and oxygenic photosynthesis within a single cell. To understand the oxygen protection mechanisms of nitrogenase, mutants defective in nitrogen fixation (Nif-) were isolated by use of diethyl sulfate as a mutagen. Out of 24 mutants screened, 6 mutants could not express nitrogenase activity under aerobic conditions, but expressed activity under anaerobic conditions (Fox-); 4 mutants showed no activity under both aerobic and anaerobic conditions (Fix-); and the remaining mutants were impaired in both aerobic and anaerobic nitrogenase activity (Imp). Respiratory oxygen consumption and photosynthetic oxygen evolution were analyzed in the wild-type and in two Fox- mutants. In the wild-type the appearance of high aerobic nitrogenase activity was correlated with an increase in dark respiration, whereas no such increase was seen in the Fox- mutants. We propose that in Fox- mutants, respiratory oxygen consumption plays an important role in maintaining aerobic nitrogenase activity.  相似文献   

12.
Azoarcus sp. strain BH72, as an endophyte of grasses, depends on successful host colonization. Type IV pili are essential for mediating the initial interaction with rice roots. In the genome sequence analysis, the pilT gene was identified, which encodes for a putative type IV pilus retraction protein. PilT of Azoarcus sp. BH72 shares high similarity to PilT of the human pathogen Pseudomonas aeruginosa PAO1 (77% amino acid sequence identity) and contains a predicted nucleotide-binding motif. To gain more insights into the role of the type IV pili in the colonization process of Azoarcus spp., we constructed an insertional mutant of pilT and a deletion mutant of pilA, the major structural component of the pilus structure. The pilT mutant, as the pilin deletion mutant deltapilA, was abolished in twitching motility. Western blot analyses and electron microscopy studies demonstrated an enhanced piliation of the Azoarcus pilT mutant strain compared with the wild type, indicating that, indeed, PilT has a role in pilus retraction. Studies on rice root colonization in gnotobiotic cultures revealed that the establishment of microcolonies on the root surface was strongly reduced in the deltapilA mutant, whereas the surface colonization was reduced by only 50% in the nontwitching pilT mutant. However, endophytic colonization of rice roots was strongly reduced in both mutants. These results demonstrate that the retractile force mediated by PilT is not essential for the bacterial colonization of the plant surface, but that twitching motility is necessary for invasion of and establishment inside the plant. Thus, a novel determinant for endophytic interactions with grasses was identified.  相似文献   

13.
14.
15.
Regulation of nitrogen fixation in Rhizobium sp.   总被引:1,自引:2,他引:1       下载免费PDF全文
Regulation of nitrogen fixation by ammonium and glutamate was examined in Rhizobium sp. 32H1 growing in defined liquid media. Whereas nitrogenase synthesis in Klebsiella pneunoniae is normally completely repressed during growth on NH4+, nitrogenase activity was detected in cultures of Rhizobium sp. grown with excess NH4+. However, an "ammonium effect" on activity was invariably observed in cultures grown on NH4+ as sole nitrogen source; the nitrogenase activity was, depending on conditions, 14 to 36% of that of comparable glutamate-grown cultures. Glutamate inhibited utilization of exogenous NH4+ and, in one of two procedures described, glutamate partially alleviated the ammonium effect on nitrogenase activity. NH4+, apparently produced from N2, was excreted into the culture medium when growth was initiated on glutamate, but not when NH4+ was thesole source of fixed nitrogen for growth. These findings are discussed in relation to nitrogen fixation by Rhizobium bacteroids.  相似文献   

16.
Azoarcus sp. strain BH72 is a Gram-negative proteobacterium of the beta subclass; it is a diazotrophic endophyte of graminaceous plants and can provide significant amounts of fixed nitrogen to its host plant Kallar grass. We aimed to obtain a physical map of the Azoarcus sp. strain BH72 chromosome to be directly used in functional analysis and as a part of an Azoarcus sp. BH72 genome project. A bacterial artificial chromosome (BAC) library was constructed and analysed. A representative physical map with a high density of marker genes was developed in which 64 aligned BAC clones covered almost the entire genome.  相似文献   

17.
18.
Developmental patterns related to nitrogen fixation in the heterocystous cyanobacteriumNostoc harboured in distinct colonies along the stem ofGunnera magellanica Lam. plantlets were examined using successive plant sections. Pronounced morphological, physiological and biochemical alterations in the cyanobacterium were demonstrated. Close to the growing apex the cyanobacterial biomass, contained in smallGunnera cells, was low and consisted mostly of vegetative cells showing a high density of different storage structures except for cyanophycin granules. In contrast, both the total and specific nitrogenase activity and the relative nitrogenase protein level were at maximum within this part; while the frequency of heterocysts increased from zero to 30% within the same area. The nitrogenase protein was localized only in the heterocysts throughout the plant. Further down theGunnera stem there was a progressive increase in both the cyanobacterial biomass and the heterocyst frequency, which finally constituted about 60% of the cyanobacterial cell population. Throughout this part of the stem, cyanophycin granules were frequent in the vegetativeNostoc cells. At the base of the stem, degeneratedNostoc cells dominated and the nitrogenase activity was close to zero, although the nitrogenase protein remained. Degeneration of theNostoc cells and leaf shedding coincided. Both intact plants (approx. 20 mm in height) and plant stem sections (2 mm in length) showed substantial nitrogenase activity, although sectioning caused a 30% reduction in total nitrogenase activity.  相似文献   

19.
The strictly respiratory, diazotrophic bacterium Azoarcus sp. strain BH72 fixes nitrogen under microaerobic conditions. In empirically optimized batch cultures at nanomolar O2 concentrations in the presence of proline, cells can shift into a state of higher activity and respiratory efficiency of N2 fixation in which intracytoplasmic membrane stacks (diazosomes) related to N2 fixation are formed. Induction of intracytoplasmic membranes is most pronounced in coculture of Azoarcus sp. strain BH72 with an ascomycete originating from the same host plant, Kallar grass. To initiate studies on function of diazosomes and regulation of their formation, diazosome-containing bacteria were compared with respect to composition or total cellular and membrane proteins with diazosome-free cells fixing nitrogen under standard conditions. In two-dimensional protein gels, we detected striking differences in protein patterns upon diazosome formation: (i) 7.3% of major proteins disappeared, and only 73% of the total proteins of control cells were detectable, indicating that diazosome-containing cells have a more specialized metabolism; (ii) nine new proteins appeared and five proteins increased in concentration, designated DP1 to DP 15; and (iii) five new major membrane proteins (MP1 to MP6) were detected, indicating that membranes might have specialized functions. N-terminal amino acid sequence analysis of DP1 to DP4 allowed us to preliminarily identify DP4 as the glnB gene product P(II), an intracellular signal transmitter known to be involved in the regulation of nitrogen metabolism. According to its electrophoretic mobility, it might be uridylylated in diazosome-free cells but not in diazosome-containing cells, or it may represent a second, not identical P(II) protein. Oligonucleotides deduced from N-terminal sequences of DP1 and DP4 specifically hybridized to chromosomal DNA of Azoarcus sp. strain BH72 in Southern hybridizations.  相似文献   

20.
Azoarcus sp. strain BH72 is an endophytic betaproteobacterium able to colonize rice roots without induction of visible disease symptoms. BH72 possesses one polar flagellum. The genome harbors three copies of putative fliC genes, generally encoding the major structural protein flagellin. It is not clear whether, in endophytic interactions, flagella mediate endophytic competence or act as MAMPs (microbe-associated molecular patterns) inducing plant defense responses. Therefore, possible functions of the three FliC proteins were investigated. Only fliC3 was found to be highly expressed in pure culture and in association with rice roots and to be required for bacterial motility, suggesting that it encodes the major flagellin. Endophytic colonization of rice roots was significantly reduced in the in-frame deletion mutant, while the establishment of microcolonies on the root surface was not affected. Moreover, an elicitation of defense responses related to FliC3 was not observed. In conclusion, our data support the hypothesis that FliC3 does not play a major role as a MAMP but is required for endophytic colonization in the Azoarcus-rice interaction, most likely for spreading inside the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号