首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the UDP-glucuronyltransferases in microsomes from guinea pig and rat liver was examined in situ by radiation inactivation analysis. The p-nitrophenol conjugating activity of guinea pig microsomes increased at lower doses of radiation; at higher doses (greater than or equal to 36 megarads), activity showed a first order decline yielding a target size of 71 +/- 9 kDa. Treating microsomes with Triton X-100 eliminated the activation seen at lower doses of radiation and yielded a simple exponential decrease in activity which gave a larger target size (95 +/- 18 kDa). A monoexponential decrease in activity was seen in sonicated microsomes, at greater than or equal to 36 megarads. The same response was obtained when the reaction was assayed in the reverse direction. The estrone conjugating activity of guinea pig microsomes was similarly activated at lower doses of radiation and declined at higher doses (greater than or equal to 36 megarads), with a target size of 57 +/- 11 kDa. Allosteric activation of the enzyme by UDP-N-acetylglucosamine was eliminated by lower doses of radiation. Thus, activation of the enzyme by radiation, detergent, sonication, and UDP-N-acetylglucosamine appear to be interdependent. These activations are postulated to be due to the existence of the enzyme in an oligomeric form which can be dissociated into monomers with higher activity. The same biphasic activation-inactivation curves were obtained for p-nitrophenol conjugation in rat liver microsomes. The target sizes were 54 +/- 8 kDa (p-nitrophenol in the forward direction) and 66 +/- 10 kDa (p-nitrophenol in the reverse direction). Thus, the enzyme appears to be smaller in rat liver as compared with guinea pig liver. Lithocholate glucuronidating activity in rat liver microsomes (at greater than 36 megarads) gave a target size of 74 +/- 1 kDa.  相似文献   

2.
The regulation of purified glutathione S-transferase from rat liver microsomes was studied by examining the effects of various sulfhydryl reagents on enzyme activity with 1-chloro-2,4-dinitrobenzene as the substrate. Diamide (4 mM), cystamine (5 mM), and N-ethylmaleimide (1 mM) increased the microsomal glutathione S-transferase activity by 3-, 2-, and 10-fold, respectively, in absence of glutathione; glutathione disulfide had no effect. In presence of glutathione, microsomal glutathione S-transferase activity was increased 10-fold by diamide (0.5 mM), but the activation of the transferase by N-ethylmaleimide or cystamine was only slightly affected by presence of glutathione. The activation of microsomal glutathione S-transferase by diamide or cystamine was reversed by the addition of dithiothreitol. Glutathione disulfide increased microsomal glutathione S-transferase activity only when membrane-bound enzyme was used. These results indicate that microsomal glutathione S-transferase activity may be regulated by reversible thiol/disulfide exchange and that mixed disulfide formation of the microsomal glutathione S-transferase with glutathione disulfide may be catalyzed enzymatically in vivo.  相似文献   

3.
Glutathione S-transferase is present in rat liver microsomal fraction, but its activity is low relative to the transferase activity present in the soluble fraction of the hepatocyte. We have found, however, that the activity of microsomal glutathione S-transferase is increased 5-fold after treatment with small unilamellar vesicles made from phosphatidylcholine. The increase in activity is due to the removal of an inhibitor of the enzyme from the microsomal membrane. The inhibitor is present in the organic layer of a washed Folch extract of the microsomal fraction. When this fraction of the microsomal extract is reconstituted in the form of small unilamellar vesicles, it inhibits microsomal glutathione S-transferase that had been activated by prior treatment with small unilamellar vesicles of pure phosphatidylcholine, but does not affect the activity of unactivated microsomal glutathione S-transferase. The inhibitor did not seem to be formed during the isolation of the microsomal fraction, and hence may be a physiological regulator of microsomal glutathione S-transferase. In this regard, both free fatty acid (palmitate) and lysophosphatidylcholine were shown to inhibit the enzyme reversibly. The results indicate that the activity of microsomal glutathione S-transferase is far greater than appreciated until now, and that this form of the enzyme may be an important factor in the hepatic metabolism of toxic electrophiles.  相似文献   

4.
A procedure for the purification of the enzyme bile acid:CoA ligase from guinea pig liver microsomes was developed. Activity toward chenodeoxycholate, cholate, deoxycholate, and lithocholate co-purified suggesting that a single enzyme form catalyzes the activation of all four bile acids. Activity toward lithocholate could not be accurately assayed during the earlier stages of purification due to a protein which interfered with the assay. The purified ligase had a specific activity that was 333-fold enriched relative to the microsomal cell fraction. The purification procedure successfully removed several enzymes that could potentially interfere with assay procedures for ligase activity, i.e. ATPase, AMPase, inorganic pyrophosphatase, and bile acid-CoA thiolase. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified ligase gave a single band of approximately 63,000 Mr. A molecular size of 116,000 +/- 4,000 daltons was obtained by radiation inactivation analysis of the ligase in its native microsomal environment, suggesting that the functional unit of the ligase is a dimer. The purified enzyme was extensively delipidated by adsorption to alumina. The delipidated enzyme was extremely unstable but could be partially stabilized by the addition of phospholipid vesicles or detergent. However, such additions did not enhance enzymatic activity. Kinetic analysis revealed that chenodeoxycholate, cholate, deoxycholate, and lithocholate were all relatively good substrates for the purified enzyme. The trihydroxy bile acid cholate was the least efficient substrate due to its relatively low affinity for the enzyme. Bile acid:CoA ligase could also be solubilized from porcine liver microsomes and purified 180-fold by a modification of the above procedure. The final preparation contains three polypeptides as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The three peptides range in size from 50,000 to 59,000, somewhat smaller than the guinea pig enzyme. The functional size of the porcine enzyme in its native microsomal environment was determined by the technique of radiation inactivation analysis to be 108,000 +/- 5,000 daltons. Thus, the functional form of the porcine enzyme also appears to be a dimer.  相似文献   

5.
Rat liver microsomes exhibit glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene as the second substrate. This activity can be stimulated 8-fold by treatment of the microsomes with N-ethylmaleimide and 4-fold with iodoacetamide. The corresponding glutathione S-transferase activity of the supernatant fraction is not affected by such treatment. These findings suggest that rat liver microsomes contain glutathione S-transferase distinct from those found in the cytoplasmic and that the microsomal transferase can be activated by modification of microsomal sulfhydryl group(s).  相似文献   

6.
Subcellular distribution of glutathione S-transferase activity was investigated as stimulated form by N-ethylmaleimide in rat liver. The stimulated glutathione S-transferase activity was localized in mitochondrial and lysosomal fractions besides microsomes. Among N-ethylmaleimide-treated submitochondrial fractions, glutathione S-transferase activity was stimulated only in outer mitochondrial membrane fraction. In lysosomal fraction, it was suggested that glutathione S-transferase activity in peroxisomes, which is immunochemically related to microsomal transferase, was also stimulated, but not in lysosomes.  相似文献   

7.
Glutathione protects isolated rat liver nuclei against lipid peroxidation by inducing a lag period prior to the onset of peroxidation. This GSH-dependent protection was abolished by exposing isolated nuclei to the glutathione S-transferase inhibitor S-octylglutathione. In incubations containing 0.2 mM S-octylglutathione, the GSH-induced lag period was reduced from 30 to 5 min. S-Octylglutathione (0.2 mM) also completely inhibited nuclear glutathione S-transferase activity and reduced glutathione peroxidase activity by 85%. About 70% of the glutathione S-transferase activity associated with isolated nuclei was solubilized with 0.3% Triton X-100. This solubilized glutathione S-transferase activity was partially purified by utilizing a S-hexylglutathione affinity column. The partially purified nuclear glutathione S-transferase exhibited glutathione peroxidase activity towards lipid hydroperoxides in solution. The data from the present study indicate that a glutathione S-transferase associated with the nucleus may contribute to glutathione-dependent protection of isolated nuclei against lipid peroxidation. Evidence was obtained which indicates that this enzyme is distinct from the microsomal glutathione S-transferase.  相似文献   

8.
The steryl-sulfatase of normal human placental microsomes was solubilized and enriched about 350-fold. Chromatography on Sepharose 6B of the purified enzyme preparation revealed a single protein peak which eluted according to an apparent molecular mass of 270 +/- 30 kDa; when electrophorized on sodium dodecyl sulfate polyacrylamide gel the sulfatase migrated according to a molecular mass of 64 +/- 4 kDa. Estrogensulfatase activity was co-purified with the steryl-sulfatase activity; obviously, both activities belong to the same enzyme species. The purified sulfatase was injected into three rabbits. Antisera produced by the rabbits yielded a single sharp immunoprecipitation line in Ouchterlony double diffusion experiments when tested with the isolated sulfatase or with a solubilized microsomal fraction of normal placentas. The activity of sulfatase preparations incubated with antiserum was precipitated by addition of polyethylene glycol followed by centrifugation; none of the antibodies reacting with the sulfatase therefore appeared to interfere with its enzymatic activity. Using these antisera, steryl-sulfatase protein could be detected by immunoblotting analysis in solubilized microsomal fractions of normal placentas but not in solubilized microsomal fractions of three steryl-sulfatase activity-deficient placentas. This finding argues in favour of human placental steryl-sulfatase deficiency being due to extremely diminished or absent enzyme protein in the placenta.  相似文献   

9.
1. Sonication of bovine liver microsomes completely solubilized the membrane-bound lysophospholipase II (EC 3.1.1.5). Co-chromatography with purified 125I-labelled lysophospholipase indicated that the enzyme was solubilized from microsomes in a lipid-free state. 2. In the presence of residual microsomal membranes, the solubilized lysophospholipase could only be partly degraded by trypsin (EC 3.4.21.4). Therefore, trypsin could not be used to study the transmembrane disposition of lysophospholipase in intact microsomes. 3. Chymotrypsin (EC 3.4.21.1) destroyed the solubilized lysophospholipase activity, even in the presence of residual microsomal membranes. 4. Lysophospholipase in intact microsomal vesicles was resistant to chymotrypsin digestion. 5. When microsomal vesicles were made leaky with lysophosphatidylcholine, chymotrypsin destroyed more than 95% of the lysophospholipase activity. 6. It is concluded from these experiments that at least the active center of lysophospholipase is located at the luminal side of the bovine liver microsomal membrane.  相似文献   

10.
Glutathione disulfide stimulates the activity of rat liver microsomal glutathione S-transferase 2-fold after incubation at 25 degrees C for 10 min. When the microsomes were incubated with the disulfide for over 20 min, the transferase activity increased to the same extent as in the case of N-ethylmaleimide (6-fold). Even in the presence of reduced glutathione, some enhancement of the transferase activity was observed. The data presented here are evidence that increase in glutathione disulfide level, e.g. by lipid peroxidation, on endoplasmic reticulum causes the upregulation of microsomal glutathione S-transferase activity.  相似文献   

11.
To determine the size of the functional catalytic unit of prostaglandin endoperoxide (prostaglandin H) synthase, radiation inactivation experiments were performed. Both microsomes from ovine seminal vesicles and purified enzyme were irradiated with 10 MeV electrons. The enzymic activities of prostaglandin H synthase, cyclooxygenase and peroxidase, showed mono-exponential inactivation curves dependent on radiation dose, indicating molecular masses of approximately 72 kDa. The enzyme in microsomes, in its native environment, as well as in its purified state after solubilisation with nonionic detergent showed identical molecular masses. The results clearly demonstrate that the monomer of the enzyme with an apparent molecular mass of 72 kDa (SDS/PAGE) is the functional unit for catalysis of both activities. Hence the two active sites of cyclooxygenase and peroxidase reside on the same polypeptide chain.  相似文献   

12.
The mechanism of oxygen radical-dependent activation of hepatic microsomal glutathione S-transferase by hydrogen peroxide was studied. Glutathione S-transferase activity in liver microsomes was increased 1.5-fold by incubation with 0.75 mM hydrogen peroxide at 37 degrees C for 10 min, and the increase in activity was reversed by incubation with dithiothreitol. Purified glutathione S-transferase was also activated by hydrogen peroxide after incubation at room temperature, and the increase in the activity was also reversed by dithiothreitol. Immunoblotting with anti-microsomal glutathione S-transferase antibodies after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of hydrogen peroxide-treated microsomes or purified glutathione S-transferase revealed the presence of a glutathione S-transferase dimer. These results indicate that the hydrogen peroxide-dependent activation of the microsomal glutathione S-transferase is associated with the formation of a protein dimer.  相似文献   

13.
Chymotrypsin inactivation of lysophosphatidic acid acyltransferase activity in detergent-disrupted rat liver microsomes, but not in intact microsomes, falsely indicated a lumenal location for the enzyme. Inhibition by several other proteases in the absence of detergent showed that lysophosphatidic acid acyltransferase activity is located on the cytoplasmic surface of microsomes. Chymotrypsin inactivation did not occur in vesicles disrupted by nitrogen cavitation unless deoxycholate was present, suggesting that deoxycholate exposes a cryptic chymotrypsin cleavage site. Criteria for localization of lumenal microsomal enzymes should include studies using several proteases and/or employ more than one method of microsomal disruption.  相似文献   

14.
Summary Mouse liver microsomes were prepared by repeated washing, homogenization, and centrifugation until almost no more soluble enzymes were found in the supernatant of the last centrifugation. About 0.09% of the total glutathione S-transferase activity and comparable amount of soluble enzymes were detected in microsomes solubilized with Emulgen 913. By double immunodiffusion, microsomal glutathione S-transferases were shown to have a complete immunological identity with cytosolic F2 and F3 transferase from mouse liver. By Sephadex gel filtration chromatography in 1% Emulgen 913, part of the microsomal transferase activity (20 to 50%) was shown to be associated with the microsomal membrane protein fraction and appeared in the void volume. Partially purified microsomal transferases were found to have molecular weights, isoelectric points and Km's for substrate and GSH which are comparable to those of soluble liver transferases. This study seems to suggest that the presence of glutathione S-transferases in microsomes is the result of specific and nonspecific association between the microsomal membrane and soluble liver transferases.  相似文献   

15.
The glutathione S-transferases are a family of dimeric enzymes. Three isozymes from the alpha family, termed YaYa, YaYc, and YcYc, and three from the mu family, termed Yb1Yb1, Yb1Yb2, and Yb2Yb2, were purified from rat liver. Binding studies were performed by equilibrium dialysis using a radiolabeled product, S(-)[14C](dinitrophenyl)glutathione. Each isozyme contained two independent binding sites which had equal affinity for the ligand. The presence of two independent active sites per enzyme dimer suggests that each subunit contains a complete active site. This conclusion was examined further using radiation inactivation which also allowed for assessment of the importance of subunit interactions in catalytic activity. The activity target size of YaYa (47 kDa) was significantly larger than the protein monomer target size (31 kDa); similarly the activity target size of YaYc was that of the dimer (54 kDa). In contrast, the activity target sizes of Yb1Yb1 and Yb2Yb2 were the same, being 35 and 29 kDa, respectively, and the protein monomer target size of Yb1Yb1 also was similar, being 32 kDa. These data indicate that interactions between subunits are critical for the maintenance of enzymatic activity of alpha class enzymes whereas each subunit of the two mu class proteins is capable of independent catalytic activity.  相似文献   

16.
The effect of enzymatically generated reduced oxygen metabolites on the activity of hepatic microsomal glutathione S-transferase activity was studied to explore possible physiological regulatory mechanisms of the enzyme. Noradrenaline and the microsomal cytochrome P-450-dependent monooxygenase system were used to generate reduced oxygen species. When noradrenaline (greater than 0.1 mM) was incubated with rat liver microsomes in phosphate buffer (pH 7.4), an increase in microsomal glutathione S-transferase activity was observed, and this activation was potentiated in the presence of a NADPH-generating system; the glutathione S-transferase activity was increased to 180% of the control with 1 mM noradrenaline and to 400% with both noradrenaline and NADPH. Superoxide dismutase and catalase inhibited partially the noradrenaline-dependent activation of the enzyme. In the presence of dithiothreitol and glutathione, the activation of the glutathione S-transferase by noradrenaline, with or without NADPH, was not observed. In addition, the activation of glutathione S-transferase activity by noradrenaline and glutathione disulfide was not additive when both compounds were incubated together. These results indicate that the microsomal glutathione S-transferase is activated by reduced oxygen species, such as superoxide anion and hydrogen peroxide. Thus, metabolic processes that generate high concentrations of reduced oxygen species may activate the microsomal glutathione S-transferase, presumably by the oxidation of the sulfhydryl group of the enzyme, and this increased catalytic activity may help protect cells from oxidant-induced damage.  相似文献   

17.
CDP-diacylglycerol(DAG) synthetase (EC 2.7.7.41) has been solubilized from bovine brain microsomes by the detergent CHAPS (3-[(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate). Optimal solubilization with 1.5% CHAPS yielded 55-60% of the synthetase activity. The effect of CHAPS on the enzyme was biphasic inhibiting at 0.3% and giving maximal activity at 0.5% (the concentration used for all assays). The solubilized, but not the microsomal enzyme is activated by phosphatidylcholine (PC) and strongly inhibited by cardiolipin and lysoPC. Strong inhibition by N-ethylmaleimide, 5,5'-dithio-bis (2-nitrobenzoic acid) and p-chloromercuribenzoate supported a sulfhydryl requirement for the enzyme. Phosphatidic acid (PA) from egg lecithin and 1-stearoyl,2-arachidonoyl PA were preferred substrates for the microsomal synthetase. Solubilized synthetase showed selectivity for the latter PA which is consistent with this enzyme functioning to help form the preponderant 1-stearoyl,2-arachidonoyl species of phosphatidylinositol. Further attempts to purify the synthetase were unsuccessful. All findings suggested the enzyme exists as an unstable complex.  相似文献   

18.
Prostaglandin (PG) E synthase was solubilized with 6 mM sodium deoxycholate from the microsomal fraction of bovine hearts. The enzyme was purified by about 800-fold to apparent homogeneity. The specific activity of the purified enzyme was about 830 mU/mg of protein, and the K(m) value for PGH(2) was 24 microM. The molecular weight of the enzyme was about 31000 on SDS-polyacrylamide gel electrophoresis and was about 60000 by gel filtration. The enzyme was separated from glutathione (GSH) S-transferase by DEAE-Toyopearl column chromatography, and did not exhibit any GSH S-transferase activity towards four different substrates. The purified enzyme was active in the absence of GSH, but it was activated by various SH-reducing reagents including dithiothreitol, GSH, or beta-mercaptoethanol. This is the first reported purification of membrane-bound PGE synthase to apparent homogeneity.  相似文献   

19.
The functional molecular weight of rat liver 3-hydroxy-3-methylglutaryl-CoA reductase was determined by radiation inactivation. Both isolated hepatic microsomes and primary hepatocytes were irradiated with high energy electrons at -135 degrees C, and the residual microsomal enzyme activity was subsequently determined. The loss of enzyme activity in both irradiated microsomes and microsomes isolated from irradiated hepatocytes followed a single exponential decay which corresponded to a molecular mass of 200 kDa. This minimal molecular size of the functional enzyme was unaffected by either addition of cholestyramine to the rat diet or addition of 25-hydroxycholesterol plus mevalonate to the isolated rat hepatocytes. In addition, surviving enzyme protein was determined by immunoprecipitation of radiolabeled enzyme from hepatocytes that had been incubated with [35S]methionine before irradiation. The target size for loss of the monomer subunits was 98 kDa. The simplest interpretation of these results is that rat liver 3-hydroxy-3-methylglutaryl-CoA reductase in situ is a noncovalently linked dimer of the Mr = 97,200 enzyme subunit.  相似文献   

20.
A microsomal glutathione S-transferase (GST) was purified from human liver. This enzyme was shown to have characteristics similar to those of the rat microsomal GST described by Morgenstern & De Pierre [(1983) Eur. J. Biochem. 134, 591-597]. The specific activity of human microsomal GST towards 1-chloro-2,4-dinitrobenzene or cumene hydroperoxide can be stimulated by treating the enzyme with N-ethylmaleimide. This enhancement of activity is accompanied by increased sensitivity to inhibition by haematin and cholic acid. The subunit Mr values of the rat and human enzymes are similar (approx. 17,300), and the proteins are immunologically related. During purification, both human and rat microsomal GST enzymes are the only hepatic proteins obtained from Triton X-100-solubilized microsomal fractions that show activity towards the nephrotoxin hexachlorobuta-1,3-diene. The involvement of microsomal GST in toxification reactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号