首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present study, conducted near Newcastle, Australia, used a blocked analysis of variance experimental design to compare initial nutrient concentrations and decomposition rates of Avicennia marina (grey mangrove) grown on sand and rock blast furnace slag. There were no significant differences ( ANOVA ; P > 0.05) in mean initial nutrient concentrations of total C, N and P for plants grown on the sand and slag substrates. A litterbag technique was used to estimate decomposition rates. After 360 days of incubation, repeated measures analysis did not identify significant differences between the substrates for the interaction term ‘substrate × time’ or the term ‘substrate’ for percentage weight loss or for C, N and P remaining. Avicennia marina on both substrates had nutrient characteristics and decomposition rates comparable to those found in the literature. Results suggest that initial nutrient concentration and decomposition rates are not dramatically influenced by the presence of slag.  相似文献   

2.
竞争和非生物胁迫影响处于地理分布边界的红树植物的个体大小 关于红树植物竞争的研究大多局限于幼苗和人工林。我们首次对天然红树林中成年红树的种内竞争进行了控制实验研究,旨在检验竞争和非生物因子在决定红树植物个体大小中的相对重要性。研究样 地位于靠近红树林地理分布边界的美国德克萨斯州阿兰萨斯港(Port Aransas)附近区域。该区域的红树林由“灌丛”状的黑红树(萌芽白骨壤,Avicennia germinans)单一物种组成。我们对10个样方中原生红树 林进行疏伐,形成系列红树林覆盖度梯度,在2013–2019年期间观测各样方中红树植物的生长指标,量化分析红树林覆盖度对红树植物生长的影响;并于2019年调查了红树林的冠层高度。研究结果表明,在该研究期间,红树植物的相对生长速率随着红树林覆盖度的增加而降低,100%红树林覆盖度样方中的红 树植物大小几乎没有增长,说明它们已经达到了该红树林密度条件下的最大尺寸。在红树林覆盖度降低 的样方中,株高明显增加,在红树林覆盖度为11%的样方中,红树植物株高增加了约52%。对比临水岸 边和林内两种生境中的样方,处于临水岸边生境的红树林冠层高度比处于林内生境的高约30%,且这两 种生境的红树林冠层高度均随红树林覆盖度的增加而降低。叶片叶绿素含量和冠层光截留量的测定数据 显示,该区域红树植物的生长也受到氮限制的影响。由此表明,处于地理分布边界的“灌丛”状红树林一 方面受到营养的限制,另一方面红树植物种内个体间仍存在较为强烈的竞争,且种内竞争对红树植物生长的影响较该红树林内非生物生境因子更为重要。  相似文献   

3.
Plant community composition can impact ecosystem processes via litter feedbacks. Species variation in litter quality may generate different patterns of nutrient supply for plants that are dependent on litter inputs. However, it is not known whether plants grow faster in their own litter, litter from other species, or in litter mixtures from multiple species. To test whether litter identity and mixture status influenced mangrove seedling growth, biomass allocation, and stoichiometry, we performed mesocosm experiments. Two species of mangrove seedlings, Avicennia germinans, black mangrove and Rhizophora mangle, red mangrove, were exposed to all possible combinations of three mangrove litter types and were isolated from all other nutrient inputs. Litter treatments significantly altered seedling growth. Seedlings from both mangrove species grew most rapidly in litter from a different species rather than their own, irrespective of litter chemical quality, decomposition rate, and nitrogen release. Litter mixtures from white and black mangroves caused black mangroves to grow 65% more than expected. Litter treatments did not impact seedling root:shoot ratios or tissue C:N. Our finding that seedlings grow best in litter from other species may indicate a mechanism that helps sustain the coexistence of dominant species.  相似文献   

4.
Toledo  Gerardo  Rojas  Adriana  Bashan  Yoav 《Hydrobiologia》2001,444(1-3):101-109
Black mangrove (Avicennia germinans) seedlings (n=555) were grown from field-collected propagules for 3 months in a new type of terrestrial nursery. They were grown in clusters of five plants, and then they were transplanted to a clear-cut zone in a lagoon fringed by a mangrove forest at Laguna de Balandra, Baja California Sur, Mexico. Survival and plant development of transplants were monitored at 6-monthly intervals for 2 years. After 1 month, the survival of seedlings was 96%, later stabilizing at approximately 77%. After 24 months, 74% of the plants were still alive. The best cluster, showing maximum growth under mangrove swamp conditions in this arid zone, was a two-plant cluster. The lagoon has a low natural regeneration rate of 48 plants per 350 m2 per 6 years of monitoring. This study shows the feasibility of restoring destroyed arid-coast lagoons with black mangroves.  相似文献   

5.
From half a million hectares at the turn of the century, Philippine mangroves have declined to only 120,000 ha while fish/shrimp culture ponds have increased to 232,000 ha. Mangrove replanting programs have thus been popular, from community initiatives (1930s–1950s) to government-sponsored projects (1970s) to large-scale international development assistance programs (1980s to present). Planting costs escalated from less than US$100 to over $500/ha, with half of the latter amount allocated to administration, supervision and project management. Despite heavy funds for massive rehabilitation of mangrove forests over the last two decades, the long-term survival rates of mangroves are generally low at 10–20%. Poor survival can be mainly traced to two factors: inappropriate species and site selection. The favored but unsuitable Rhizophora are planted in sandy substrates of exposed coastlines instead of the natural colonizers Avicennia and Sonneratia. More significantly, planting sites are generally in the lower intertidal to subtidal zones where mangroves do not thrive rather than the optimal middle to upper intertidal levels, for a simple reason. Such ideal sites have long been converted to brackishwater fishponds whereas the former are open access areas with no ownership problems. The issue of pond ownership may be complex and difficult, but such should not outweigh ecological requirements: mangroves should be planted where fishponds are, not on seagrass beds and tidal flats where they never existed. This paper reviews eight mangrove initiatives in the Philippines and evaluates the biophysical and institutional factors behind success or failure. The authors recommend specific protocols (among them pushing for a 4:1 mangrove to pond ratio recommended for a healthy ecosystem) and wider policy directions to make mangrove rehabilitation in the country more effective.  相似文献   

6.
Elevated concentrations of heavy metals in growth substrate are known to reduce root growth more than shoot growth. We hypothesized an increased sensitivity to drought in plants exposed to heavy metals. The hypothesis was tested using birch seedlings grown on a substrate with three levels of Cu–Ni containing slag (0%, 0.5% and 2.5%) mixed with sand, and were either well watered or exposed to drought. The experiment was conducted outdoors for 4 months. Both the slag addition and low substrate moisture reduced plant dry mass. There was a significant slag × moisture interaction. The effect of moisture was most pronounced on slag-free substrate, whereas at the highest slag addition level there was no growth response to moisture. Stem diameter, length of radial file and cell size showed similar responses, but error variation was high and the individual effects were not always significant. The general picture is, however, clear, the effect of moisture on all growth parameters increasing with decreasing slag concentration in the substrate. We conclude that metal-contaminated substrate leads to an inability of the plants to respond to improved soil moisture, an effect which can be seen even at metal levels which do not show any large growth reduction. In addition, reduced plant size, caused by heavy metals, results in feedbacks that increase the relative availability of water and mineral nutrients. At the highest slag addition level, substrate moisture was slightly higher than in controls, probably due to a reduced transpiration, and the senescence was slower, probably due to lower nutrient requirements of the smaller plants.  相似文献   

7.
Barnacle fouling has shown to impede gas exchange ability of mangroves. Fouled mangrove plants may therefore obtain less carbon dioxide and water for photosynthesis, resulting in reduced food and chloroplasts production, but such hypothesis remains untested. The objective of the present study compared the stomata density (essential for obtaining carbon dioxide and water molecules) and leaf chlorophyll concentration (essential for photosynthesis) of fouled and non-fouled (control) of seedlings, juveniles and adults of the mangroves Kandelia obovata, in Hong Kong and Taiwan. The seedlings and juveniles of the dominant mangrove plant species, Kandelia obovata, in Hong Kong and Taiwan had a higher density of stomata but a lower chlorophyll concentration in the leaves, when the trunks and twigs were fouled by the barnacle Fistulobalanus albicostatus. Fouled K. obovata appears to develop more stomata in the leaves to compensate the blocking effect of the lenticel from barnacle fouling. As fouling impacts the gaseous exchange ability of mangroves, fouled plants could obtain less carbon dioxide and water for photosynthesis, resulting in reduced food and chloroplasts production. Fouled adult plants, however, had variable responses in leaf chlorophyll concentrations among the study sites, suggesting adults were more tolerant of barnacle fouling. The present study reveals seedling and juvenile mangrove plants are very susceptible to barnacle fouling, which impedes the gaseous exchange mechanism and food production, which can subsequently result in reduced growth, fitness and survival. Handling editor: P. Viaroli  相似文献   

8.
We have analysed the effect of prey and fertilization by inorganic nutrients on the survival, growth, reproduction (sexual and vegetative) and mucilage secretion of Pinguicula vallisneriifolia (Lentibulariaceae), a carnivorous plant inhabiting rocky substrates of southern Spain. We tested the hypothesis that carnivorous plants are more prey dependent when root access to nutrients is strongly limited by (1) analysing the importance of the carnivorous habit to the fitness of P. vallisneriifolia in its natural rocky habitat, and (2) determining whether the effect of trapped prey varies with soil nutrient levels. Our 2-year experimental results indicated prey to be limiting to P. vallisneriifolia growth on its natural rocky substrate. Animal food supply substantially increased the chance of survival, growth, vegetative propagation, sexual reproductive success and mucilage secretion. The differences between prey levels were more evident at the end of the experiment when all the surviving Prey-exclusion plants had lost weight, and the probability of sexual reproduction and of vegetative propagation by axillary buds had accordingly diminished. Furthermore, there were clear benefits from carnivory at the population level, since both the expected individual life span and the lifetime vegetative and sexual output correlated positively with the quantity of prey trapped. Application of insects to non-fertilized plants stimulated growth, but similar application to fertilized plants grown on a complete nutrient solution failed to enhance growth. There was no obvious benefit from the provision of a balanced mineral nutrient solution (alone or with prey). The greatest absolute growth and sexual and vegetative output resulted from providing a surplus of insects to plants on their natural rocky substrate. The strong dependence of P. vallisneriifolia on prey can therefore be considered a useful preadaptation enabling colonization of rocky substrates. Received: 11 November 1996 / Accepted: 31 March 1997  相似文献   

9.
Two challenges frequently encountered in the production of ornamental plants in organic horticulture are: (1) the rate of mineralization of phosphorus (P) and nitrogen (N) from organic fertilizers can be too slow to meet the high nutrient demand of young plants, and (2) the exclusive use of peat as a substrate for pot-based plant culture is discouraged in organic production systems. In this situation, the use of beneficial soil microorganisms in combination with high quality compost substrates can contribute to adequate plant growth and flower development. In this study, we examined possible alternatives to highly soluble fertilizers and pure peat substrates using pelargonium (Pelargonium peltatum L’Her.) as a test plant. Plants were grown on a peat-based substrate with two rates of compost addition and with and without arbuscular mycorrhizal (AM) fungi. Inoculation with three different commercial AM inocula resulted in colonization rates of up to 36% of the total root length, whereas non-inoculated plants remained free of root colonization. Increasing the rate of compost addition increased shoot dry weight and shoot nutrient concentrations, but the supply of compost did not always completely meet plant nutrient demand. Mycorrhizal colonization increased the number of buds and flowers, as well as shoot P and potassium (K) concentrations, but did not significantly affect shoot dry matter or shoot N concentration. We conclude that addition of compost in combination with mycorrhizal inoculation can improve nutrient status and flower development of plants grown on peat-based substrates.  相似文献   

10.
From an eight by eight factorial crossing with Salix viminalis, 40 of the 64 families obtained were selected for further analysis. Fourteen seedplants from each of these 40 families were planted in two pairs of contrasting environments: sand and clay soil, and low and high nutrient supply. The material in the soil contrast was harvested after 1, 4 and 6 years of growth. The material in the nutrient contrast was harvested each year for 3 years and analysed after the first and the third harvests. The correlation between number of shoots and weight in the clay environment changed from being negative in the first harvests to positive at the last harvest, compared with the sand environment where this correlation was positive in all years. In the nutrient contrast this correlation was positive at the last harvest in the high nutrient environment, but no correlation could be detected in the low nutrient environment. The differences in correlations between environments may be due to a different allocation of nutrients in the plants, depending on whether the plant is under stress or not. The data suggests that the genetic relationship between growth components is the same over age and environments when the plants are grown without stress.  相似文献   

11.
Survival, growth, aboveground biomass accumulation, sediment surface elevation dynamics and nitrogen accumulation in sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m−2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1,171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ among treatments. Rates of surface sediment accretion (means ± SE) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm year−1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m−2, respectively, showing highly significant differences among treatments. Mean (±SE) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and −0.3 (±0.1) mm year−1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m−2, respectively. All planted treatments accumulated greater nitrogen concentrations in the sediment compared to the unplanted control. Sediment %N was significantly different among densities which suggests one potential causal mechanism for the facilitatory effects observed: high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further research, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation processes that may be crucial in mangrove ecosystem adaptation to sea-level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather, facilitatory effects enhanced survival at high densities, suggesting that managers may be able to take advantage of high plantation densities to help mitigate sea-level rise effects by encouraging positive sediment surface elevation.  相似文献   

12.
Mangroves are unique intertidal halophyte formations growing in sheltered tropical and subtropical coastal areas. Due to the increasing population and economic development, mangroves have faced degradation and loss, which has been mainly caused by land conversion into aquaculture ponds in Asia. In the past several decades, the rapid growth of aquaculture has induced water pollution. Using mangroves for effluent treatment from coastal aquaculture ponds could be a suitable approach for wastewater treatment and healthy aquaculture development. An Integrated Mangrove-Aquaculture System (IMAS) was established to test whether the idea of a mangrove in situ treatment for aquaculture wastewater is feasible. The monocultures of three mangroves, Sonneratia caseolaris, Kandelia obovata, and Aegiceras corniculatum were established with area proportions of 45%, 30%, or 15%, respectively. One control pond without mangroves was also set up. The results indicated that the mangroves had different tolerabilities to long-term inundation. The aquaculture ponds had different fishery yields, considering the mangrove species and area proportions. The water quality of most of the experimental ponds was better than the control pond, except for the planted Sonneratia. It is concluded that mangroves can reduce the concentration of dissolved inorganic nitrogen and phosphate, buffer the pH value and increase the concertration of dissolved oxygen in aquaculture water bodies effectively. It is suggested to use 15% of the Aegiceras corniculatum area to conduct in situ purification of aquaculture wastewater and to enhance aquaculture production.  相似文献   

13.
The effect of arbuscular mycorrhiza (AM) on the interaction of large plants and seedlings in an early succession situation was investigated in a greenhouse experiment using compartmented rhizoboxes. Tripleurospermum inodorum, a highly mycorrhiza-responsive early coloniser of spoil banks, was cultivated either non-mycorrhizal or inoculated with AM fungi in the central compartment of the rhizoboxes. After two months, seedlings of T. inodorum or Sisymbrium loeselii, a non-host species colonising spoil banks simultaneously with T. inodorum, were planted in lateral compartments, which were colonised by the extraradical mycelium (ERM) of the pre-cultivated T. inodorum in the inoculated treatments. The experiment comprised the comparison of two AM fungal isolates and two substrates: spoil bank soil and a mixture of this soil with sand. As expected based on the low nutrient levels in the substrates, the pre-cultivated T. inodorum plants responded positively to mycorrhiza, the response being more pronounced in phosphorus uptake than in nitrogen uptake and growth. In contrast, the growth of the seedlings, both the host and the non-host species, was inhibited in the mycorrhizal treatments. Based on the phosphorus and nitrogen concentrations in the biomass of the experimental plants, this growth inhibition was attributed to nitrogen depletion in the lateral compartments by the ERM radiating from the central compartment. The results point to an important aspect of mycorrhizal effects on the coexistence of large plants and seedlings in nutrient deficient substrates.  相似文献   

14.
Two hypotheses have been proposed to explain increases in plant nitrogen (N) and phosphorus (P) concentrations with latitude: (i) geochemical limitation to P availability in the tropics and (ii) temperature driven variation in growth rate, where greater growth rates (requiring greater nutrient levels) are needed to complete growth and reproduction within shorter growing seasons in temperate than tropical climates. These two hypotheses were assessed in one forest type, intertidal mangroves, using fertilized plots at sites between latitudes 36º S and 27º N. The N and P concentrations in mangrove leaf tissue increased with latitude, but there were no trends in N : P ratios. Growth rates of trees, adjusted for average minimum temperature showed a significant increase with latitude supporting the Growth Rate Hypothesis. However, support for the Geochemical Hypothesis was also strong; both photosynthetic P use efficiency and nutrient resorption efficiency decreased with increasing latitude, indicating that P was less limiting to metabolism at the higher latitudes. Our study supports the hypothesis that historically low P availability in the tropics has been an important selective pressure shaping the evolution of plant traits.  相似文献   

15.
Recently, many studies have focused on the possibility of restoring mangrove ecosystems by introducing fast‐growing mangroves. However, methods for managing an exotic fast‐growing species to restore mangrove ecosystems and at the same time preventing invasion by introduced species remains unclear. Sonneratia apetala Buch‐Ham is one example of an exotic mangrove with both high ecological value and potential risk for invasion after introduction. To investigate the possibility of reducing the potential for invasion by altering light availability, we simulated different irradiances of S. apetala understory in the greenhouse. For each irradiance treatment, three levels of competition between S. apetala and native mangroves Aegiceras corniculatum (L.) were used: no competition, intraspecific competition and interspecific competition. Compared with A. corniculatum, S. apetala showed a significantly higher growth rate for both height and biomass accumulation under full irradiation. Compared to the full irradiation treatment, the shading treatment significantly reduced the height, total biomass and biomass allocation to leaves of S. apetala by 61.31, 71.0, and 76.2%, respectively, whereas the growth of A. corniculatum was not affected. The results suggested that lowering light availability could inhibit the growth of S. apetala and increase the competitiveness of A. corniculatum. Planting introduced fast‐growing mangroves at a density of approximately 2,000 plants/hm2 is an effective strategy for preventing potential invasion and restoring wetland habitats. By taking advantage of the differences in shade tolerance between fast‐growing exotic mangroves and native mangroves, introduction of fast‐growing mangroves in coastal areas could have huge potential for reforesting mangrove ecosystems.  相似文献   

16.
The distribution and growth forms of the mangroves on Zanzibar island (Unguja and Pemba) were investigated. Pemba island, with approximately 12000 ha of mangroves, had nine species; and Unguja island, with 6 000 ha, had eight. Average cropping intensities in Pemba island varied between 350–1937 cut plants per ha while in Unguja these were between 777–3567 cut plants per ha. In Pemba, mangrove forests were relatively less heavily exploited compared to those in Unguja, where clear felling was common. Charcoal, lime and salt production are the major activities which involve heavy utilization of mangrove wood.The fishery resources (shellfish and finfish) associated with the mangrove vegetation were also investigated by examining the composition of fish catches at landing stations in mangrove as well as nonmangrove zones of fishing districts. A survey on the fauna associated with mangrove forests was also conducted. A number of the local commercial fish species were found to be associated with the mangrove vegetation. The fishes of the genusLethrinus and the rabbit fishSiganus were found to constitute the bulk of the fish caught from waters adjacent to mangroves using movable traps. The molluscPyrazus sp., which is commonly used by the local people for food and bait, was found only in the mangroves.  相似文献   

17.
Hydraulic restoration by opening the shrimp pond banks facilitated the establishment of planted mangroves and colonisation by non-planted mangrove species and was shown to be an effective method of mangrove rehabilitation. Planted Rhizophora apiculata and Rhizophora mucronata had grown significantly in 6 years, to 300 and 350 cm, respectively. However, the growth rate of Bruguiera cylindrica was merely 150 cm in the same period despite vigorous growth in the initial stage. About 15 non-planted mangrove species had colonised within 6 years after reopening the banks, with the dominant species being Avicennia marina (46.9%) followed by B. cylindrica (27.0%) and Ceriops tagal (14.9%). After the enhancement, soil organic carbon increased considerably from 110 to 160 tonC ha−1 in 2 years at the lower elevation, indicating that hydraulic restoration could stimulate carbon recovery through enhancement of mangrove growth. However, soil organic carbon decreased by almost half in the higher ground, suggesting that carbon decomposition was accelerated due to drying of soils.  相似文献   

18.
Mimicking the natural heterogeneity of wetland substrates, e.g. by roughening surface soil or constructing hummocks, has been shown to facilitate wetland plant establishment. We asked if incorporating substrate heterogeneity could also help plants withstand variation in moisture levels. In a wetland with Carex stricta (tussock sedge) as the main restoration target, we manipulated substrates to create different soil moisture environments for planted C. stricta plugs. Our artificial mounds mimicked tussocks formed by C. stricta in natural meadows (circa 10–40 cm in height); we also varied mound compositions and created shallow depressions. Monitoring demonstrated variation in soil moisture among our treatments and natural differences in soil moisture between experimental blocks. Additionally, rainfall varied from severe drought in year 1 to extreme rainfall in year 2. Plug survival, flowering, cover, biomass, leaf length, and growth rate all varied with treatment, block, and/or year. Interactions among those factors were common. Planting plugs in shallow depressions exacerbated stress in a wet block during a wet year, causing low survival. Planting plugs in moisture‐retaining peat pots allowed them to survive and sustain growth even in a dry block during a dry year. We conclude that heterogeneous substrates can be used to hedge against environmental variability by widening the range of microsites available within a restoration site and thereby moderating stressful conditions in some areas.  相似文献   

19.
Summary Plants ofSuaeda fructicosa were grown in sand culture with various combinations of excess copper, silicon and sodium. Effects of different concentrations of NaCl on the activities of acid phosphatase and PEP-phosphatase were investigated in the above mentioned plants. Plants which were given extra copper without NaCl showed very poor growth compared with control plants given a normal nutrient whereas plants given extra NaCl alone or with copper displayed luxuriant growth. Enzymes extracted from the plants given extra copper with normal nutrient levels showed stimulation in the activities of both the above mentioned enzymes. In plants supplied with extra sodium chloride the activity of acid phosphatase was inhibited and in that of PEP-phosphatase was stimulated. Sodium silicate in the growth medium eliminated both effects of extra sodium chloride.  相似文献   

20.
While saltwort (Batis maritima L.) is common in the fringe mangrove forests of southwest Florida, its role in regeneration of degraded mangrove communities is not known. Given the potential encroachment and subsequent degradation of mangrove communities by sea-level rise, it is important to quantify the effect of early-colonizing vegetation to early mangrove seedling survival. A greater number of mangrove seedlings were observed in existing B. maritima patches compared to surrounding mudflats. A planting experiment was designed to determine whether B. maritima was responsible for the observed pattern. Black mangrove (Avicennia germinans L.) seedlings, raised in a nursery, were planted in previously established B. maritima patches and on mudflats with and without nursery-raised B. maritima. There was significantly lower mortality of A. germinans seedlings when planted in existing B. maritima patches (69%), compared to seedlings planted on the mudflats (93%), demonstrating that existing B. maritima improved A. germinans seedling survival. Nursery-raised B. maritima had lower mortality on open mudflats (28%), suggesting that it can tolerate conditions, which make it an early colonizer of newly available habitats. The primary mechanism proposed for improving seedling success is a slight increase in elevation provided by the dense root network of established B. maritima. These findings have implications for scientists and managers anticipating the response of mangroves to sea-level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号