首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cardiovascular benefit of fish oil, including eicosapentaenoic acid (EPA), in humans and experimental animals has been reported. The role of endothelin-1 (ET-1) in cardiac hypertrophy is well known. Endothelin-1 stimulates prepro-ET-1 mRNA expression in cardiomyocytes, and the autocrine/paracrine system of ET-1 is important for cardiomyocyte hypertrophy. Although many studies link EPA to cardiac protection, the effect of EPA on cardiac hypertrophy has yet to be clarified. Recently, we demonstrated that ET-1-induced cardiomyocytic change could be prevented by pretreatment with EPA. The present study investigated the changes of different components of the ET system at the mRNA level in ET-1-administered cardiomyocytes, and examined the effect of EPA pretreatment. Ventricular cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats, cultured in Dulbecco's modified Eagle's medium and Ham F12 supplemented with 0.1% fatty acid-free bovine serum albumin for 3 days. At Day 4 of culture, the cardiomyocytes were divided into 3 groups: control group, ET-1-treated (0.1 nM) group, and ET-1-treated group pretreated with EPA (10 microM). Twenty-four hours after treatment, the gene expressions of different components of the endothelin system in three experimental groups were evaluated by real-time polymerase chain reaction. Prepro-ET-1 mRNA expression was 53% upregulated in ET-1-induced hypertrophied cardiomyocytes and suppressed in the EPA-pretreated group. Endothelin-converting enzyme-1 (ECE-1) was also increased in ET-1-administered cardiomyocytes by 42% compared with the control group and was reversed in the EPA-pretreated group. The two receptors of ET system, ET(A) and ET(B), tended to be increased in the ET-1-treated group, but no statistical significance was seen among study groups. Endothelin-1 increased prepro-ET-1 and ECE-1 mRNA expression in hypertrophied-neonatal cardiomyocytes, and this was reversed with EPA pretreatment. Thus, EPA may play a crucial role in the regression of ET-1-induced cardiomyocyte hypertrophy, partly through the suppression of ET-1 and ECE-1 expression.  相似文献   

2.

Aims

Cardiac hypertrophy is elicited by endothelin (ET)-1 as well as other neurohumoral factors, hemodynamic overload, and oxidative stress; HMG-CoA reductase inhibitors (statins) were shown to inhibit cardiac hypertrophy partly via the anti-oxidative stress. One of their common intracellular pathways is the phosphorylation cascade of MEK signaling. Pin1 specifically isomerizes the phosphorylated protein with Ser/Thr-Pro bonds and regulates their activity through conformational changes. There is no report whether the Pin1 activation contributes to ET-1-induced cardiomyocyte hypertrophy and whether the Pin1 inactivation contributes to the inhibitory effect of statins. The aim of this study was to reveal these questions.

Main methods

We assessed neonatal rat cardiomyocyte hypertrophy using ET-1 and fluvastatin by the cell surface area, ANP mRNA expression, JNK and c-Jun phosphorylation, and [3H]-leucine incorporation.

Key findings

Fluvastatin inhibited ET-1-induced increase in the cell surface area, ANP expression, and [3H]-leucine incorporation; and it suppressed the signaling cascade from JNK to c-Jun. The phosphorylated Pin1 level, an inactive form, was decreased by ET-1; however, it reached basal level by fluvastatin. Furthermore, Pin1 overexpression clearly elicited cardiomyocyte hypertrophy, which was inhibited by fluvastatin.

Significance

This is the first report that ET-1-induced cardiomyocyte hypertrophy is mediated through the Pin1 activation and that the inhibitory effect of fluvastatin on cardiomyocyte hypertrophy would partly be attributed to the suppression of the Pin1 function. This study firstly suggests that Pin1 determines the size of hypertrophied cardiomyocyte by regulating the activity of phosphorylated molecules and that statins exert their pleiotropic effects partly via Pin1 inactivation.  相似文献   

3.
Wu B  Wang TH  Pan JY  Zhu XN  Zhan CY 《生理学报》1998,50(1):87-93
内皮系-1(ET-1)是一种强的生长因子,并诱导心肌细胞肥大反应。在本实验中,我们探讨了G蛋白、蛋白激酶C(PKC)和Na+-H+交换在ET-1诱导的培养新生大鼠心肌细胞肥大反应中的作用。ET-1(10-10~10-7mol/L)促进3H-亮氨酸掺入,增加细胞蛋白质的含量和心肌细胞的表面积,且呈剂量依赖性,它们的EC50分别为5.2×10-10,5.2×10-10和7.3×10-10mol/L。用蛋白激酶C(PKC)抑制剂,Staurosporin(2nmol/L)预处理心肌细胞,可完全阻断ET-1诱导的心肌细胞的这些肥大反应,而蛋白激酶C激动剂,佛波酸酯(PMA)(10-8~10-6mol/L)呈剂量依赖性促进心肌细胞的肥大反应。用Na+-H+交换抑制剂,氨氯毗咪(10-4mol/L)预处理心肌细胞,可抑制ET-1诱导的心肌细胞肥大反应,但不影响PMA诱导的心肌细胞肥大反应。百日咳毒素(150ng/ml)预处理心肌细胞,可明显抑制ET-1诱导的心肌细胞肥大反应。这些结果提示,ET-1诱导的培养新生大鼠心肌细胞肥大反应是与百日咳毒素敏感的G蛋白相耦联,蛋白激酶C和Na+.H+交换可能在ET-1诱导的心肌细胞肥大反应中是重要的细胞内信使转导途径。  相似文献   

4.
Cardiomyocytes release (or metabolize) several diffusible agents (e.g., nitric oxide [NO], endothelin-1 [ET-1], and angiotensin II) that exert direct effects on myocyte function under various pathologic conditions. Although cardiac hypertrophy is a compensatory mechanism in response to different cardiovascular diseases, there can be a pathologic transition in which the myocardium becomes dysfunctional. Recently, NO has been found to be an important regulator of cardiac remodeling. Specifically, NO has been recognized as a potent antihypertrophic and proapoptotic mediator in cultured cardiomyocytes. We demonstrated that ET-1-induced hypertrophic remodeling in neonatal cardiomyocytes was arrested by pretreatment with eicosapentaenoic acid (EPA), a major component of fish oil. In some recent studies, EPA has demonstrated cardioprotective effects by modulating NO. This study investigated the changes in NO synthase (NOS) in ET-1-induced hypertrophied cardiomyocytes and in total levels of nitrates and nitrites. Ventricular cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats and were cultured in D-MEM/Ham F12 supplemented with 0.1% fatty acid-free bovine serum albumin for 3 days. At Day 4 of culture, the cardiomyocytes were divided into three groups: control group, ET-1 (0.1 nM) group, and ET-1 pretreated with EPA (10 microM) group. NOS gene expression was evaluated 24 hrs after treatment using real-time polymerase chain reaction. Endothelial NOS (eNOS) mRNA expression was decreased in the ET-1 group compared with controls and was unchanged by pretreatment with EPA. mRNA expression of inducible NOS (iNOS) was significantly increased in ET-1-treated cardiomyocytes and was suppressed by EPA pretreatment. Neuronal NOS gene expression and total NO level did not exhibit a statistically significant change in any of the groups. There may be some interaction between ET-1, eNOS, and iNOS in ET-1-induced and EPA-regressed hypertrophied cardiomyocytes that suppress iNOS expression without modulating total NO level or eNOS gene expression.  相似文献   

5.
Cardiac hypertrophy is formed in response to hemodynamic overload. Although a variety of factors such as catecholamines, angiotensin II (AngII), and endothelin-1 (ET-1) have been reported to induce cardiac hypertrophy, little is known regarding the factors that inhibit the development of cardiac hypertrophy. Production of atrial natriuretic peptide (ANP) is increased in the hypertrophied heart and ANP has recently been reported to inhibit the growth of various cell types. We therefore examined whether ANP inhibits the development of cardiac hypertrophy. Pretreatment of cultured cardiomyocytes with ANP inhibited the AngII- or ET-1-induced increase in the cell size and the protein synthesis. ANP also inhibited the AngII- or ET-1-induced hypertrophic responses such as activation of mitogen-activated protein kinase (MAPK) and induction of immediate early response genes and fetal type genes. To determine how ANP inhibits cardiomyocyte hypertrophy, we examined the mechanism of ANP-induced suppression of the MAPK activation. ANP strongly induced expression of MAPK phosphatase-1 (MKP-1) and overexpression of MKP-1 inhibited AngII- or ET-1-induced hypertrophic responses. These growth-inhibitory actions of ANP were mimicked by a cyclic GMP analog 8-bromo-cyclic GMP. Taken together, ANP directly inhibits the growth factor-induced cardiomyocyte hypertrophy at least partly via induction of MKP-1. Our present study suggests that the formation of cardiac hypertrophy is regulated not only by positive but by negative factors in response to hemodynamic load.  相似文献   

6.
The extracellular signal-regulated kinase (ERK) pathway is activated by hypertrophic stimuli in cardiomyocytes. However, whether ERK plays an essential role or is implicated in all major components of cardiac hypertrophy remains controversial. Using a selective MEK inhibitor, U0126, and a selective Raf inhibitor, SB-386023, to block the ERK signaling pathway at two different levels and adenovirus-mediated transfection of dominant-negative Raf, we studied the role of ERK signaling in response of cultured rat cardiomyocytes to hypertrophic agonists, endothelin-1 (ET-1), and phenylephrine (PE). U0126 and SB-386023 blocked ET-1 and PE-induced ERK but not p38 and JNK activation in cardiomyocytes. Both compounds inhibited ET-1 and PE-induced protein synthesis and increased cell size, sarcomeric reorganization, and expression of beta-myosin heavy chain in myocytes with IC(50) values of 1-2 microm. Furthermore, both inhibitors significantly reduced ET-1- and PE-induced expression of atrial natriuretic factor. In cardiomyocytes transfected with a dominant-negative Raf, ET-1- and PE-induced increase in cell size, sarcomeric reorganization, and atrial natriuretic factor production were remarkably attenuated compared with the cells infected with an adenovirus-expressing green fluorescence protein. Taken together, our data strongly support the notion that the ERK signal pathway plays an essential role in ET-1- and PE-induced cardiomyocyte hypertrophy.  相似文献   

7.
Human heart failure is preceded by a process called cardiac remodeling, in which heart chambers progressively enlarge and contractile function deteriorates. Programmed cell death (apoptosis) of cardiac muscle cells has been identified as an essential process in the progression to heart failure. The execution of the apoptotic program entails complex interactions between and execution of multiple molecular subprograms. Endothelin (ET)-1, a potent vasoconstrictor peptide, is synthesized and secreted by cardiomyocytes and induces hypertrophy of cardiomyocytes. The cardiovascular benefit of fish oil containing eicosapentaenoic acid (EPA) in humans and experimental animals was reported. Recently, we found that ET-1-induced cardiomyocytic remodeling could be prevented by pretreatment with EPA. The aim of the present study is to investigate whether there would be any alteration in the expression of important apoptosis-related molecules in ET-1-administered hypertrophied cardiomyocytes. We also sought to determine, if there are alterations in apoptotic molecules, what type of role for EPA would then exist. Ventricular cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats and were cultured for 3 days. At Day 4 of culture, the cardiomyocytes were divided into three groups: control, the ET-1 (0.1 nM)-treated group, and the ET-1 group pretreated with EPA (10 microM). Twenty-four hours after the treatment, the gene expressions of three important molecules related to apoptosis (caspase-3, Bax, and Bcl-2) in three experimental groups were evaluated by real-time polymerase chain reaction. The present study could not demonstrate any significant or representative alteration in any of the above three apoptosis-related important markers in either ET-1-induced hypertrophied cardiomyocytes with or without EPA pretreatment. The present study would at least be able to exclude the involvement of some representative molecules related to apoptosis in ET-1-induced hypertrophied cardiomyocytes. In addition, the present study demonstrates that the antihypertrophic effect of EPA to ET-1-administered cardiomyocytes appears not to modulate the apoptosis signaling cascade.  相似文献   

8.
9.
Many of the cardiovascular benefits of fish oil result from the antiarrhythmic actions of the n-3 polyunsaturated lipids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The beneficial effects of DHA/EPA in patients with coronary artery disease and myocardial infarction may also result from modulation of the myocardial hypertrophic response. Hypertrophy was assessed in neonatal cardiomyocytes exposed to phenylephrine (PE) by measuring cell surface area, total protein synthesis ((14)C leucine incorporation), and the organization of sarcomeric alpha-actinin and by monitoring expression of atrial natriuretic factor (ANF). We report that PE induced a twofold increase in cell surface area and protein synthesis in cardiomyocytes. The hypertrophied cardiomyocytes also exhibited increased expression of ANF in perinuclear regions and organization of sarcomeric alpha-actinin into classical z-bands. Treatment of cardiomyocytes with 5 microM DHA effectively prevented PE-induced hypertrophy as shown by inhibition of surface area expansion and protein synthesis, inhibition of ANF expression, and prevention of alpha-actinin organization into z-bands. DHA treatment prevented PE-induced activation of Ras and Raf-1 kinase. The upstream inhibition of Ras --> Raf-1 effectively prevented translocation and nuclear localization of phosphorylated extracellularly regulated kinase 1 and 2 (Erk1/2). These effects consequently led to inhibition of nuclear translocation, and hence, activation of the downstream signaling enzyme p90 ribosomal S6 kinase (p90(rsk)). These results indicate that PE-induced cardiac hypertrophy can be minimized by DHA. Our results suggest that inhibition of Ras --> Raf-1 --> Erk1/2 --> p90(rsk) --> hypertrophy is one possible pathway by which DHA can inhibit cardiac hypertrophy. In vivo studies are needed to confirm these in vitro effects of DHA.  相似文献   

10.
Members of the mitogen-activated protein kinase (MAPK) cascade such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 are implicated as important regulators of cardiomyocyte hypertrophic growth in culture. However, the role that individual MAPK pathways play in vivo has not been extensively evaluated. Here we generated nine transgenic mouse lines with cardiac-restricted expression of an activated MEK1 cDNA in the heart. MEK1 transgenic mice demonstrated concentric hypertrophy without signs of cardiomyopathy or lethality up to 12 months of age. MEK1 transgenic mice showed a dramatic increase in cardiac function, as measured by echocardiography and isolated working heart preparation, without signs of decompensation over time. MEK1 transgenic mice and MEK1 adenovirus-infected neonatal cardiomyocytes each demonstrated ERK1/2, but not p38 or JNK, activation. MEK1 transgenic mice and MEK1 adenovirus-infected cultured cardiomyocytes were also partially resistant to apoptotic stimuli. The results of the present study indicate that the MEK1-ERK1/2 signaling pathway stimulates a physiologic hypertrophy response associated with augmented cardiac function and partial resistance to apoptotsis.  相似文献   

11.
Hong HM  Song EJ  Oh E  Kabir MH  Lee C  Yoo YS 《Proteomics》2011,11(2):283-297
It is well known that the two chemical compounds endothelin-1 (ET-1) and isoproterenol (ISO) can individually induce cardiac hypertrophy through G protein-coupled receptors in cardiomyocytes. However, the cardiac hypertrophy signaling pathway activated by ET-1 and ISO is not well defined. Therefore, we investigated the protein expression profile and signaling transduction in HL-l cardiomyocyte cells treated with ET-1 and ISO. Following separation of the cell lysates by using 2-DE and silver staining, we identified 16 protein spots that were differentially expressed as compared to the controls. Of these 16 spots, three changed only after treatment with ET-1, whereas four changed only after treatment with ISO, suggesting that these two stimuli could induce different signaling pathways. In order to reveal the differences between ET-1- and ISO-induced signaling, we studied the different events that occur at each step of the signaling pathways, when selected biocomponents were blocked by inhibitors. Our results indicated that ET-1 and ISO used different pathways for phosphorylation of glycogen synthase kinase-3β (GSK3β). ET-1 mainly used the mitogen-activated protein kinase and phosphatidylinositol-3-kinase/AKT pathways to activate GSK3β, whereas under ISO stimulation, only the phosphatidylinositol-3-kinase/AKT pathway was required to trigger the GSK3β pathway. Furthermore, the strength of the GSK3β signal in ISO-induced cardiac hypertrophy was stronger than that in ET-1-induced cardiac hypertrophy. We found that these two agonists brought about different changes in the protein expression of HL-1 cardiomyocytes through distinct signaling pathways even though the destination of the two signaling pathways was the same.  相似文献   

12.
Endothelin (ET-1) is a peptide hormone mediating a wide variety of biological processes and is associated with development of cardiac dysfunction. Generally, ET-1 is regarded as a molecular marker released only in correlation with the observation of a hypertrophic response or in conjunction with other hypertrophic stress. Although the cardiac hypertrophic effect of ET-1 is demonstrated, inotropic properties of cardiac muscle during chronic ET-1-induced hypertrophy remain largely unclear. Through the use of a novel in vitro multicellular culture system, changes in contractile force and kinetics of rabbit cardiac trabeculae in response to 1 nM ET-1 for 24 hours can be observed. Compared to the initial force at t = 0 hours, ET-1 treated muscles showed a ∼2.5 fold increase in developed force after 24 hours without any effect on time to peak contraction or time to 90% relaxation. ET-1 increased muscle diameter by 12.5±3.2% from the initial size, due to increased cell width compared to non-ET-1 treated muscles. Using specific signaling antagonists, inhibition of NCX, CaMKII, MAPKK, and IP3 could attenuate the effect of ET-1 on increased developed force. However, among these inhibitions only IP3 receptor blocker could not prevent the increase muscle size by ET-1. Interestingly, though calcineurin-NFAT inhibition could not suppress the effect of ET-1 on force development, it did prevent muscle hypertrophy. These findings suggest that ET-1 provokes both inotropic and hypertrophic activations on myocardium in which both activations share the same signaling pathway through MAPK and CaMKII in associated with NCX activity.  相似文献   

13.
c-Jun N-terminal protein kinase (JNK) and p38, two distinct members of the mitogen-activated protein (MAP) kinase family, regulate gene expression in response to various extracellular stimuli, yet their physiological functions are not completely understood. In this report we show that JNK and p38 exerted opposing effects on the development of myocyte hypertrophy, which is an adaptive physiological process characterized by expression of embryonic genes and unique morphological changes. In rat neonatal ventricular myocytes, both JNK and p38 were stimulated by hypertrophic agonists like endothelin-1, phenylephrine, and leukemia inhibitory factor. Expression of MAP kinase kinase 6b (EE), a constitutive activator of p38, stimulated the expression of atrial natriuretic factor (ANF), which is a genetic marker of in vivo cardiac hypertrophy. Activation of p38 was required for ANF expression induced by the hypertrophic agonists. Furthermore, a specific p38 inhibitor, SB202190, significantly changed hypertrophic morphology induced by the agonists. Surprisingly, activation of JNK led to inhibition of ANF expression induced by MEK kinase 1 (MEKK1) and the hypertrophic agonists. MEKK1-induced ANF expression was also negatively regulated by expression of c-Jun. Our results demonstrate that p38 mediates, but JNK suppresses, the development of myocyte hypertrophy.  相似文献   

14.
15.
Although endothelin-1 (ET-1) stimulates vascular endothelial growth factor (VEGF) expression in a variety of cells, including endothelial cells and vascular smooth muscle cells, the effects of ET-1 on expression of VEGF and its receptors in cardiomyocytes are unknown. In the present study, we found that treatment of neonatal rat cardiomyocytes with ET-1 for 24 h resulted in upregulation of VEGF and its two principal receptors, fetal liver kinase 1 and fms-like tyrosine kinase 1, in a concentration-dependent manner (10(-12) to 10(-6) M). ET-1 treatment also caused significant cardiomyocyte hypertrophy, as indicated by increases in cell surface area and [(14)C]leucine uptake by cardiomyocytes. Treatment with TA-0201 (10(-6) M), an ET(A)-selective blocker, eliminated ET-1-induced overexpression of VEGF and its receptors as well as cardiomyocyte hypertrophy. Treatment with VEGF neutralizing peptides (5-10 mug/ml) partially but significantly inhibited ET-1-induced cardiomyocyte hypertrophy. These results suggest that ET-1 treatment of cardiomyocytes promotes overexpression of VEGF and its receptors via activation of ET(A) receptors, and consequently the upregulated VEGF signaling system appears to contribute, at least in part, to ET-1-induced cardiomyocyte hypertrophy.  相似文献   

16.
Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1.  相似文献   

17.
活性氧介导内皮素-1诱导的培养新生大鼠心肌细胞肥大   总被引:4,自引:0,他引:4  
Wang YZ  Luo JD 《生理学报》2004,56(3):403-406
实验在原代培养的新生大鼠心肌细胞中进行,检测内皮素-1(endothelin-1,ET-1)及其他药物对心肌细胞活性氧(reactiveoxygen species,ROS)产生和心肌细胞肥大的作用,以探讨ROS在ET-1诱导的心肌细胞肥大信号通路中的作用及ROS与蛋白激酶C(protein kinase C,PKC)活化的关系。细胞内ROS水平用ROS敏感的荧光探针2,7-dichlorofluorescin dictate(DCF-DA)反映,心肌细胞肥大通过细胞内RNA含量、细胞内蛋白质含量、细胞表面积大小来确定。实验结果如下:单独使用ET-1后,心肌细胞内反应ROS含量的DCF-DA荧光值比对照组增加77%,反应心肌肥大的PI荧光值、细胞内蛋白质含量、细胞表面积也分别比对照组增加128%、87%和151%。ET-1合用内皮素受体A亚型(ET_A)受体拮抗剂ABT-627、PKC抑制剂CC或过氧化氢酶后,DCF-DA的增加分别减弱62%、60%和51%,同时心肌细胞肥大也被抑制,单独使用PKC激动剂佛波醇脂(PMA)也能使DCF-DA的产生比对照组增加74%。因此,在ET-1诱导心肌细胞肥大的过程中,ET-1能够使心肌细胞产生ROS和诱导ROS依赖的心肌细胞肥大,这一作用依赖于ET_A受体的激活和PKC的活化,·ROS在ET-1诱导心肌细胞肥大中起信号传递的作用。  相似文献   

18.
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号