首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Locomotor muscle fatigue, defined as an exercise-induced reduction in maximal voluntary force, occurs during prolonged exercise, but its effects on cardiorespiratory responses and exercise performance are unknown. In this investigation, a significant reduction in locomotor muscle force (-18%, P < 0.05) was isolated from the metabolic stress usually associated with fatiguing exercise using a 100-drop-jumps protocol consisting of one jump every 20 s from a 40-cm-high platform. The effect of this treatment on time to exhaustion during high-intensity constant-power cycling was measured in study 1 (n = 10). In study 2 (n = 14), test duration (871 +/- 280 s) was matched between fatigue and control condition (rest). In study 1, locomotor muscle fatigue caused a significant curtailment in time to exhaustion (636 +/- 278 s) compared with control (750 +/- 281 s) (P = 0.003) and increased cardiac output. Breathing frequency was significantly higher in the fatigue condition in both studies despite similar oxygen consumption and blood lactate accumulation. In study 2, high-intensity cycling did not induce further fatigue to eccentrically-fatigued locomotor muscles. In both studies, there was a significant increase in heart rate in the fatigue condition, and perceived exertion was significantly increased in study 2 compared with control. These results suggest that locomotor muscle fatigue has a significant influence on cardiorespiratory responses and exercise performance during high-intensity cycling independently from metabolic stress. These effects seem to be mediated by the increased central motor command and perception of effort required to exercise with weaker locomotor muscles.  相似文献   

2.
Static stretch is a safe and feasible method which usually is used before exercise to avoid muscle injury and to improve muscle performance. The purpose of this study was to determine the effects of cyclic static stretch (CSS) on fatigue recovery of triceps surae (TS) in female basketball players. Nine athlete volunteers between 20 and 30 years participated in this study containing two sessions. After warm-up a pressure cuff was fastened above the knee joint and its pressure was increased to 140 mmHg. The subjects were asked to perform one maximum voluntary contraction (MVC) followed by a fatigue test including maximum isometric fatiguing contraction of TS. These steps were similar in both sessions. Then, a two-minute rest was included in the first session while 4 static stretches were performed to TS in the second session. After interventions, one MVC was done and the pressure cuff was released. During these steps, peak torque (PT) and electromyography (EMG) were recorded. The amount of lower leg pain was determined by the visual analogue scale (VAS). The value of PT increased significantly after CSS but its increase was not significant after rest. It seems that the effects of rest and CSS on the EMG parameters, PT and pain are similar.  相似文献   

3.
Many low-back patients undergo electromyography (EMG)-based evaluations of muscle performance but present to the clinic after being prescribed muscle relaxants. The question that needed to be addressed was, do centrally acting muscle relaxants (methocarbamol; Robaxin®) affect the EMG spectral indices of muscle fatigue that are often used to assess muscle performance. Participants performed an isometric spine extension protocol involving a 30 s fatigue exertion trial, then 1 min rest, and finally a 10 s long repeat exertion trial, at a 60% maximum voluntary contraction (MVC) level of exertion. Seven men were tested on two separate days (approximately 3–7 days apart), one day while medicated (six doses) with Robaxin and on another while not medicated. Specifically, the following parameters were studied in the bilateral multifidus (L5), lower erector spinae (L3) and upper erector spinae (T9): the slope of median power frequencies (MPFs) over the duration of the trial and the initial y-intercept of the MPF. The results generally suggest that methocarbamol (Robaxin) does not have any significant affect on the EMG median power frequency of the extensors during a fatiguing contraction followed by a repeat exertion, at least in normal people (one exception was observed—one side of multifidus at L5). However, given that this appears to be the first study of its kind, and that a relatively small number of subjects were used in this study, further investigation is needed to make a definitive conclusion about the effects of this drug on the several features of the electromyogram, over a broad spectrum of the clinical population performing a wider variety of tasks.  相似文献   

4.
It has been suggested that fatigue affects proprioception and consequently movement accuracy, the effects of which may be counteracted by increased muscle activity. To determine the effects of fatigue on tracking performance and muscle activity in the M. extensor carpi radialis (ECR), 11 female participants performed a 2-min tracking task with a computer mouse, before and immediately after a fatiguing wrist extension protocol. Tracking performance was significantly affected by fatigue. Percentage time on target was significantly lower in the first half of the task after the fatigue protocol, but was unaffected in the latter half of the task. Mean distance to target and the standard deviation of the distance to target were both increased after the fatigue protocol. The changed performance was accompanied by higher peak EMG amplitudes in the ECR, whereas the static and the median EMG levels were not affected.

The results of this study showed that subjects changed tracking performance when fatigued in order to meet the task instruction to stay on target. Contrary to our expectations, this did not lead to an overall higher muscle activity, but to a selective increase in peak muscle activity levels of the ECR.  相似文献   


5.
This study comprised 2 main experiments: one was to determine the oxidative DNA damage under hyperbaric hyperoxia (HBO), and the other was to evaluate the effects of pre-exposure to HBO on high-intensity exercise performance. Healthy subjects (n = 8) inspired 100% O2 in an experimental chamber at a pressure of 1.3 atmospheres absolute (ATA) for 50 minutes once per week for 2 weeks. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured as a marker of DNA oxidative damage on day 0 and on days 1, 3, and 5 after each HBO exposure. To investigate the effects of pre-exposure to HBO on high-intensity exercise performance, subjects (n = 6) performed maximal isometric knee extensor exercise (30 repetitions x 2 sets) with and without HBO pre-exposure (100% O2 at 1.3 ATA for 50 minutes). Urinary 8-OHdG did not show any significant change after HBO exposure. Isometric knee extensor torque was significantly lower during the first half of the first set of exercises after HBO pre-exposure compared with the normobaric normoxia (NBO) trial. The decreased torque was associated with the lower integrated electromyography with respect to time. Changes in the degree of ischemia-reperfusion in the vastus lateralis muscle during exercise were larger in the HBO pre-exposure trial than in the NBO trial. Muscle fatigue index, serum lactate concentration, heart rate, and systolic blood pressure showed no differences between the 2 trials. These results indicated that HBO exposure was harmless to DNA, and HBO pre-exposure did not enhance high-intensity exercise performance. As a practical application, athletes who require maximal muscle strength should not inspire high-concentration of O2 just before their competitions because it might, as the case may be, impair their performance.  相似文献   

6.
The purpose of this study was to determine the effects of shoulder muscle fatigue on three dimensional scapulothoracic and glenohumeral kinematics. Twenty healthy subjects participated in this study. Three-dimensional scapulothoracic and glenohumeral kinematics were determined from electromagnetic sensors attached to the scapula, humerus, and thorax. Surface electromyographic (EMG) data were collected from the upper and lower trapezius, serratus anterior, anterior and posterior deltoid, and infraspinatus muscles. Median power frequency (MPF) values were derived from the raw EMG data and were used to indicate the degree of local muscle fatigue. Kinematic and EMG measures were collected prior to and immediately following the performance of a shoulder elevation fatigue protocol. Following the performance of the fatigue protocol subjects demonstrated more upward and external rotation of the scapula, more clavicular retraction, and less humeral external rotation during arm elevation. All muscles with the exception of the lower trapezius showed EMG signs of fatigue, the most notable being the infraspinatus and deltoid muscles. In general, greater scapulothoracic motion and less glenohumeral motion was observed following muscle fatigue. Further studies are needed to determine what effects these changes have on the soft tissues and mechanics of the shoulder complex.  相似文献   

7.
IntroductionThe aim of this study was to assess the effects of neuromuscular fatigue on stretch reflex-related torque and electromyographic activity of spastic knee extensor muscles in hemiplegic patients. The second aim was to characterize the time course of quadriceps muscle fatigue during repetitive concentric contractions.MethodsEighteen patients performed passive, isometric and concentric isokinetic evaluations before and after a fatigue protocol using an isokinetic dynamometer. Voluntary strength and spasticity were evaluated following the simultaneous recording of torque and electromyographic activity of rectus femoris (RF), vastus lateralis (VL) and biceps femoris (BF).ResultsIsometric knee extension torque and the root mean square (RMS) value of VL decreased in the fatigued state. During the fatigue protocol, the normalized peak torque decreased whereas the RMS of RF and BF increased between the first five and last five contractions. There was a linear decrease in the neuromuscular efficiency-repetitions relationships for RF and VL. The peak resistive torque and the normalized RMS of RF and VL during passive stretching movements were not modified by the fatigue protocol for any stretch velocity.DiscussionThis study showed that localized quadriceps muscle fatigue caused a decrease in voluntary strength which did not modify spasticity intensity. Changes in the distribution of muscle fiber type, with a greater number of slow fibers on the paretic side, may explain why the stretch reflex was not affected by fatigue.  相似文献   

8.
It is well known that most sports are characterized by the performance of intermittent high-intensity actions, requiring high muscle power production within different intervals. In fact, the manipulation of the exercise to rest ratio in muscle power training programs may constitute an interesting strategy when considering the specific performance demand of a given sport modality. Thus, the aim of this study was to evaluate the influence of different schemes of rest intervals and number of repetitions per set on muscle power production in the squat exercise between exercise to rest ratio-equated and -nonequated conditions. Nineteen young males (age: 25.7 ± 4.4 years; weight: 81.3 ± 13.7 kg; height: 178.1 ± 5.5 cm) were randomly submitted to 3 different resistance exercise loading schemes, as follows: short-set short-interval condition (SSSI; 12 sets of 3 repetitions with a 27.3-second interval between sets); short-set long-interval condition (SSLI; 12 sets of 3 repetitions with a 60-second interval between sets); long-set long-interval (LSLI; 6 sets of 6 repetitions with a 60-second rest interval between sets). The main finding of the present study is that the lower exercise to rest ratio protocol (SSLI) resulted in greater average power production (601.88 ± 142.48 W) when compared with both SSSI and LSLI (581.86 ± 113.18 W; 578 ± 138.78 W, respectively). Additionally, both the exercise to rest ratio-equated conditions presented similar performance and metabolic results. In summary, these findings suggest that shorter rest intervals may fully restore the individual's ability to produce muscle power if a smaller exercise volume per set is performed and that lower exercise to rest ratio protocols result in greater average power production when compared with higher ratio ones.  相似文献   

9.
The purpose of this study is to examine plasma cortisol and adrenocorticotropin (ACTH) levels following a brief high-intensity bout of exercise. Each subject (n = 6) performed a 1-min bout of exercise on a cycle ergometer at 120% of his maximum O2 uptake. Blood samples were collected at rest, immediately following the exercise bout, and at 5, 15, and 30 min postexercise. Mean (+/- SE) plasma ACTH levels increased significantly (P less than 0.05) from 2.2 +/- 0.4 pmol/l at rest to 6.2 +/- 1.7 pmol/l immediately following exercise. Mean (+/- SE) plasma cortisol levels increased significantly from 0.40 +/- 0.04 mumol/l at rest to 0.52 +/- 0.04 mumol/l at 15 min postexercise. These data show that brief high-intensity exercise results in significant increases in plasma cortisol and ACTH levels. Furthermore, the temporal sequence between the two hormones suggests that the increase in plasma cortisol levels following brief high-intensity exercise is the result of ACTH-induced steroidogenesis in the adrenal cortex.  相似文献   

10.
The purpose of this study was to determine if the type and intensity of aerobic training affects performance in a subsequent strength-training session after varying periods of recovery. Sixteen male subjects participated in the study and were divided into 2 groups based on aerobic training, high-intensity intervals (MAX n = 8) and continuous submaximal (SUB n = 8). Each subject performed 4 sets of both bench press and leg press at approximately 75% 1 repetition maximum (1RM) following aerobic training with recovery periods of 4, 8, and 24 hours, as well as once in a control condition. Both the 4- and 8-hour conditions resulted in fewer total leg press repetitions than the control and 24-hour conditions. There was no difference between both the control and 24-hour conditions. No main effect was shown with respect to the type of aerobic training. It was concluded that when aerobic training precedes strength training, the volume of work that can be performed is diminished for up to 8 hours. This impairment appears to be localized to the muscle groups involved in the aerobic training.  相似文献   

11.
The objective of this study was to determine the effect of acute moderate hypoxia and rest duration on performance and on the accumulated oxygen deficit (AOD) in high-intensity intermittent efforts. After preliminary tests, 2 groups of nonacclimatized men (resident at 690 m above sea level) carried out 3 randomized protocols of effort (EXP1, EXP2, and EXP5) on 3 different days. These tests were performed at acute moderate altitude (2,320 m) by the hypoxia group (H) and in normoxia by the normoxia group (N). During EXP1 the subjects ran a maximum of five 400-m sprints (90% intensity) on a treadmill, with a pause between efforts of 1 minute. In EXP2 and EXP5 the same protocol was repeated, increasing the rest period between sprints to 2 and 5 minutes, respectively. Lactate accumulation and exhaled gases were measured during the tests. Accumulated oxygen deficit was calculated for each sprint. The total AOD (SigmaAOD) for each type of protocol was determined to be the sum of the corresponding accumulated deficits. The AODs were influenced by the length of rest period (p < 0.05) but not by H. The increase in recovery time between sprints increased the SigmaAOD (7,843 +/- 4,435 vs. 7,137 +/- 2,117 ml; 11,013 +/- 4,616 vs. 9,931 +/- 2,731 ml; 12,611 +/- 4,594 vs. 12,907 +/- 3,085 ml for H and N in EXP1, EXP2, and EXP5, respectively). The AOD increased in value when the same sprint was compared from EXP1 to EXP5 (p < 0.05). The results obtained show that exposure to acute moderate altitude does not affect the anaerobic pathway contribution in intermittent high-intensity exercises. Performance during this type of repeated effort is not altered during acute exposure to moderate altitude, which should be taken into account when an acclimatizing period is not possible.  相似文献   

12.
Effect of respiratory muscle fatigue on subsequent exercise performance.   总被引:3,自引:0,他引:3  
The purpose of this study was to determine whether induction of inspiratory muscle fatigue might impair subsequent exercise performance. Ten healthy subjects cycled to volitional exhaustion at 90% of their maximal capacity. Oxygen consumption, breathing pattern, and a visual analogue scale for respiratory effort were measured. Exercise was performed on three separate occasions, once immediately after induction of fatigue, whereas the other two episodes served as controls. Fatigue was achieved by having the subjects breathe against an inspiratory threshold load while generating 80% of their predetermined maximal mouth pressure until they could no longer reach the target pressure. After induction of fatigue, exercise time was reduced compared with control, 238 +/- 69 vs. 311 +/- 96 (SD) s (P less than 0.001). During the last minute of exercise, oxygen consumption and heart rate were lower after induction of fatigue than during control, 2,234 +/- 472 vs. 2,533 +/- 548 ml/min (P less than 0.002) and 167 +/- 15 vs. 177 +/- 12 beats/min (P less than 0.002). At exercise isotime, minutes ventilation and the visual analogue scale for respiratory effort were larger after induction of fatigue than during control. In addition, at exercise isotime, relative tachypnea was observed after induction of fatigue. We conclude that induction of inspiratory muscle fatigue can impair subsequent performance of high-intensity exercise and alter the pattern of breathing during such exercise.  相似文献   

13.
Muscle fatigue and recovery are complex processes influencing muscle force generation capacity. While fatigue reduces this capacity, recovery acts to restore the unfatigued muscle state. Many factors can potentially affect muscle recovery, and among these may be a task dependency of recovery following an exercise. However, little has been reported regarding the history dependency of recovery after fatiguing contractions. We examined the dependency of muscle recovery subsequent to four different histories of fatiguing muscle contractions, imposed using two cycle times (30 and 60 s) during low to moderate levels (15% and 25% of maximum voluntary contraction (MVC)) of intermittent static exertions involving index finger abduction. MVC and low-frequency electrical stimulation (LFES) measures (i.e., magnitude, rise and relaxation rates) of muscle capacity were used, all of which indicated a dependency of muscle recovery on the muscle capacity state existing immediately after fatiguing exercise. This dependency did not appear to be modified by either the cycle time or exertion level leading to that state. These results imply that the post-exercise rate of recovery is primarily influenced by the immediate post-exercise muscle contractile status (estimated by MVC and LFES measures). Such results may help improve existing models of muscle recovery, facilitating more accurate predictions of localized muscle fatigue development and thereby helping to enhance muscle performance and reduce the risk of injury.  相似文献   

14.
The purpose of this investigation was to assess the effects of rest interval following active warm-up (WU) durations on the diurnal variation of high-intensity cycling performance. Eleven male physical education students (22.6 ± 2.5 years; 179.2 ± 5.7 cm; 82.6 ± 9.6 kg; mean ± SD) participated in a cross-over randomized study, and they all underwent the 30-s Wingate test in the morning (08:00 h) and in the evening (18:00 h), after 5-min (WU5) and 15-min (WU15) warm-up durations, either with rest (WR), or without rest interval (NR) separating the WU at the onset of the high-intensity cycling exercise performance. The WU consisted of pedaling at a constant pace of 60 rpm against at 50% of the maximal aerobic power. The rest interval between the end of warm-up and the beginning of the anaerobic exercise was set at 5 min. Peak power (PP), mean power (MP), and the fatigue index (FI) were recorded. Likewise, heart rate, oral temperature (T), and rating of perceived exertion were registered at rest, at the end of the WU and just after the Wingate test. The ANOVA’s showed no main effect of the rest interval on PP, MP, FI, and T parameters. However, significant interactions (WU duration × time-of-day and recovery condition × WU duration) were recorded on both PP and MP parameters. PP and MP were higher in the afternoon compared to the morning with gains of 4.4 and 3.6%, respectively. In the morning sessions, the WU15 allows better improvement of muscular power, with either 0- or 5-min pre-exercise rest interval. However, in the afternoon sessions, both WU15 and WU5 durations allow better improvement of 30-s Wingate cycling performance in, respectively, WR and NR conditions. Therefore, athletes and coaches, as well as researchers, interested in high-intensity cycling exercise, should take into account the rest interval, the time-of-day, and the duration of warm-up when practicing, assessing, or interpreting data related to powerful lower limbs’ muscles contractions activities.  相似文献   

15.
This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than in control). In conclusion, the present investigation demonstrated that 8 days of HIT lasting only 280 s elevated both GLUT-4 content and maximal glucose transport activity in rat skeletal muscle to a level similar to that attained after LIT, which has been considered a tool to increase GLUT-4 content maximally.  相似文献   

16.
Metabolic alkalosis induced by sodium bicarbonate (NaHCO(3)) ingestion has been shown to enhance performance during brief high-intensity exercise. The mechanisms associated with this increase in performance may include increased muscle phosphocreatine (PCr) breakdown, muscle glycogen utilization, and plasma lactate (Lac(-)(pl)) accumulation. Together, these changes would imply a shift toward a greater contribution of anaerobic energy production, but this statement has been subject to debate. In the present study, subjects (n = 6) performed a progressive wrist flexion exercise to volitional fatigue (0.5 Hz, 14-21 min) in a control condition (Con) and after an oral dose of NaHCO(3) (Alk: 0.3 g/kg; 1.5 h before testing) to evaluate muscle metabolism over a complete range of exercise intensities. Phosphorus-31 magnetic resonance spectroscopy was used to continuously monitor intracellular pH, [PCr], [P(i)], and [ATP] (brackets denote concentration). Blood samples drawn from a deep arm vein were analyzed with a blood gas-electrolyte analyzer to measure plasma pH, Pco(2), and [Lac(-)](pl), and plasma [HCO(3)(-)] was calculated from pH and Pco(2). NaHCO(3) ingestion resulted in an increased (P < 0.05) plasma pH and [HCO(3)(-)] throughout rest and exercise. Time to fatigue and peak power output were increased (P < 0.05) by approximately 12% in Alk. During exercise, a delayed (P < 0.05) onset of intracellular acidosis (1.17 +/- 0.26 vs. 1.28 +/- 0.22 W, Con vs. Alk) and a delayed (P < 0.05) onset of rapid increases in the [P(i)]-to-[PCr] ratio (1.21 +/- 0.30 vs. 1.30 +/- 0.30 W) were observed in Alk. No differences in total [H(+)], [P(i)], or [Lac(-)](pl) accumulation were detected. In conclusion, NaHCO(3) ingestion was shown to increase plasma pH at rest, which resulted in a delayed onset of intracellular acidification during incremental exercise. Conversely, NaHCO(3) was not associated with increased [Lac(-)](pl) accumulation or PCr breakdown.  相似文献   

17.
It has been found that one session of intense muscle strength training decreases muscle strength temporarily and causes neuromuscular fatigue in the trained muscles, but little attention has been given to the effects of neuromuscular fatigue on the other components of motor performance. The purpose of this study was to examine in normal healthy volunteers the effects of a 1-h strength training session on the motor performance of the upper extremity, including reaction time, speed of movement, tapping speed and coordination. Group of 30 healthy female volunteers, aged 29-47 years, were randomly divided into sub-groups, (A and B, n = 15 per group). Both groups first completed a set of motor performance tests on 3 consecutive days. On the 4th day, group A carried out a 1-h muscle strength training session of the upper extremities. Isometric muscle strengths and electromyogram (EMG) data were recorded before the training session. Immediately after the training session the same recordings were repeated, and additional motor performance tests were also performed. Group B carried out only the motor performance tests. The groups exchanged programmes the following week. The 1-h strength training session decreased the isometric muscle strength of wrist flexion by 18% (P < 0.001) and extension by 18% (P < 0.001) in group A, while in group B flexion strength decreased by 19% (P < 0.001) and extension strength by 17% (P < 0.001). All the measured EMG activations also decreased in both groups. There were no statistically significant differences in the results of the motor performance tests between the mean values of the three baseline measurements and the values recorded after the training session. The result was surprising, but straightforward; neuromuscular fatigue induced by a 1-h strength training session of the upper extremities had no effect on the motor performance functions of the hand, as indicated by reaction times, speed of movement, tapping speed and coordination, in these normal healthy female volunteers.  相似文献   

18.
Scapular kinematics alterations have been found following muscle fatigue. Considering the importance of the lower trapezius in coordinated scapular movement, this study aimed to investigate the effects of elastic taping (Kinesio taping, KT) for muscle facilitation on scapular kinematics of healthy overhead athletes following muscle fatigue. Twenty-eight athletes were evaluated in a crossover, single-blind, randomized design, in three sessions: control (no taping), KT (KT with tension) and sham (KT without tension). Scapular tridimensional kinematics and EMG of clavicular and acromial portions of upper trapezius, lower trapezius and serratus anterior were evaluated during arm elevation and lowering, before and after a fatigue protocol involving repetitive throwing. Median power frequency decline of serratus anterior was significantly lower in KT session compared to sham, possibly indicating lower muscle fatigue. However, the effects of muscle fatigue on scapular kinematics were not altered by taping conditions. Although significant changes were found in scapular kinematics following muscle fatigue, they were small and not considered relevant. It was concluded that healthy overhead athletes seem to present an adaptive mechanism that avoids the disruption of scapular movement pattern following muscle fatigue. Therefore, these athletes do not benefit from the use of KT to assist scapular movement under the conditions tested.  相似文献   

19.
In 11 patients, all women, 21-55 years of age, with unilateral work-related myalgia of the trapezius muscle, the right and left trapezius muscles were examined simultaneously for electromyogram (EMG) signs of localized muscle fatigue. All patients were tested with 0-kg hand load for 5 min, holding the arms straight at 90 degrees of elevation in the scapular plane. Only 4 of the patients tolerated exposure to higher load levels. They were tested with 1 kg hand load for 3 min and 2 kg hand load for 2 min, with a period of rest of 30 min between the trials. The EMG mean power frequency (MPF) and root mean square (rms) were calculated. Data were normalized with the initial value as a reference and regression analyses were performed. On both sides a decrease of MPF and an increase of rms were found with increasing time and load, i.e. classical EMG signs of localized muscle fatigue. Compared with the nonaffected side smaller changes were found on the affected side, possibly due to pain inhibition, impaired microcirculation and biochemical changes along the muscle fibres. At 0-kg hand load we found no change of MPF on either side despite subjective feelings of fatigue and pain. We interpreted these findings as an indication of reduced capacity of the affected trapezius muscle to sustain static load with early development of pain-associated local fatigue.  相似文献   

20.
Glucose 1,6-bisphosphate (G-1,6-P2) is a potent activator of phosphofructokinase (PFK) and an inhibitor of hexokinase in vitro. It has been suggested that increases in G-1,6-P2 are a main means by which PFK can achieve significant catalytic function in vivo despite falling pH and that increases in G-1,6-P2 will inhibit hexokinase in vivo. The purpose of the present study was to determine whether contraction-induced changes in flux through PFK and hexokinase are associated with changes in G-1,6-P2 in skeletal muscle. Ten men performed bicycle exercise for 10 min at 40 and 75% of maximal O2 uptake (VO2max) and to fatigue [4.8 +/- 0.6 (SE) min] at 100% VO2max. Biopsies were obtained from the quadriceps femoris muscle at rest and after each work load and analyzed for G-1,6-P2. G-1,6-P2 averaged 111 +/- 13 mumol/kg dry wt at rest and 121 +/- 16, 123 +/- 15, and 123 +/- 11 mumol/kg dry wt after the low-, moderate-, and high-intensity exercise bouts, respectively (P less than 0.05 for all means vs. rest). Flux through PFK was estimated to increase exponentially as the exercise intensity increased and muscle pH decreased at the higher work loads, whereas flux through hexokinase was estimated to increase during exercise at 40 and 75% VO2max but decrease sharply at 100% VO2max. These data demonstrate that flux through neither PFK nor hexokinase is mediated by changes in G-1,6-P2 in human skeletal muscle during short-term dynamic exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号