首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
占萍  王冲  刘维达 《中国真菌学杂志》2013,8(3):179-184,191
近年来,一系列重要医学致病真菌全基因组数据陆续被公布,使人类对这些致病菌的认识提高到全新水平.本文在回溯医学真菌基因组学和基因组测序技术发展历程、综述其发展现状及应用的基础上,再分别介绍重要医学真菌全基因组测序的进展.  相似文献   

3.
Histoplasma capsulatum, the causative agent of the most common systemic fungal infection, histoplasmosis, has become subject to increasing study in parallel with rising prevalence of human immunodeficiency. This review presents a summary of the advances made in the investigation of H. capsulatum genomics, molecular epidemiology, pathogenesis, and molecular genetics.  相似文献   

4.
近年来,一系列重要医学致病真菌全基因组数据陆续被公布,使人类对这些致病菌的认识提高到全新水平。本文在回溯医学真菌基因组学和基因组测序技术发展历程、综述其发展现状及应用的基础上,再分别介绍重要医学真菌全基因组测序的进展。  相似文献   

5.
Novel strategies in antifungal lead discovery   总被引:3,自引:0,他引:3  
There have been significant developments in fungal genomics over the past year. The recently released genome sequences of Aspergillus fumigatus and Cryptococcus neoformans have provided unprecedented opportunities for comparative genomics studies of many clinically relevant fungal pathogens. Emerging experimental analysis tools, such as fitness profiling and protein microarrays, have greatly enhanced our ability to conduct genome-wide functional studies.  相似文献   

6.
Fungal genomics and pathogenicity.   总被引:5,自引:0,他引:5  
  相似文献   

7.
Entomopathogenic fungi, such as Beauveria bassiana and Metarhizium anisopliae, are environmentally friendly biocontrol agents (BCAs) against various arthropod pests. We provide an overview to the past-decade advances in fungal BCA research and application in China. Since 1960s, fungal BCAs have been mass-produced for application and at present, thousands of tons of their formulations are annually applied to control forest, agricultural, greenhouse and grassland insect pests throughout the country. Apart from technical advances in mass production, formulation and application of fungal BCAs, basic studies on the genomics, molecular biology, genetic engineering and population genetics of fungal entomopathogens have rapidly progressed in the past few years in China. The completed genomic studies of M. anisopliae, Metarhizium acridum, B. bassiana and Cordyceps militaris provide profound insights into crucial gene functions, fungal pathogenesis, host–pathogen interactions and mechanisms involved in fungal sexuality. New knowledge gained from the basic studies has been applied to improve fungal virulence and stress tolerance for developing more efficacious and field-persistent mycoinsecticides by means of microbial biotechnology, such as genetic engineering. To alleviate environmental safety concerns, more efforts are needed to generate new data not only on the effects of engineered BCAs on target and non-target arthropods but also on their potential effects on gene flow and genetic recombination before field release.  相似文献   

8.
9.
It has been almost 10 years since Joan Bennett suggested that fungal biologists create a “wish list” for fungal genome sequences (Bennett JW. White paper: Genomics for filamentous fungi. Fungal Genet Biol 1997; 21: 3–7). The availability of over 200 review papers concerning fungal genomics is a reflection of significant progress with a diversity of fungal species. Although much progress has been made, the use of genomic data to study mycotoxin synthesis and function, pathogenesis and other aspects of fungal biology is in its infancy. Here, we briefly present the status of publicly available genomic resources for Fusarium, a genus of important plant pathogenic and mycotoxin-producing fungi of worldwide concern. Preliminary examination of microarray data collected from F. verticillioides liquid cultures provides evidence of widespread differential gene expression over time.  相似文献   

10.
《Fungal biology》2020,124(1):34-43
While much research focus is paid to hypervirulent fungal lineages during emerging infectious disease outbreaks, examining enzootic pathogen isolates can be equally fruitful in delineating infection dynamics and determining pathogenesis. The fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd), exhibits markedly different patterns of disease in natural populations, where it has caused massive amphibian declines in some regions, yet persists enzootically in others. Here we compare in vitro gene expression profiles of a panel of Bd isolates representing both the enzootic Bd-Brazil lineage, and the more recently diverged, panzootic lineage, Bd-GPL. We document significantly different lineage-specific and intralineage gene expression patterns, with Bd-Brazil upregulating genes with aspartic-type peptidase activity, and Bd-GPL upregulating CBM18 chitin-binding genes, among others. We also find pronounced intralineage variation in membrane integrity and transmembrane transport ability within our Bd-GPL isolates. Finally, we highlight unexpectedly divergent expression profiles in sympatric panzootic isolates, underscoring microgeographic functional variation in a largely clonal lineage. This variation in gene expression likely plays an important role in the relative pathogenesis and host range of Bd-Brazil and Bd-GPL isolates. Together, our results demonstrate that functional genomics approaches can provide information relevant to studies of virulence evolution within the Bd clade.  相似文献   

11.
With the increasing prevalence of life-threatening systemic fungal infections in the human population, there is a need to develop new, more-effective antifungal agents. This, in turn, will depend upon the identification and exploitation of new antifungal targets--aspects of fungal cytology, metabolism and gene expression which are important for fungal pathogenesis, but which have no mammalian host counterpart. Such new targets have been identified through a combination of classical genetic, cytological and biochemical studies and are reviewed here, as is the potential for applying recombinant DNA techniques as a means of confirming the role of the identified gene products in pathogenesis.  相似文献   

12.
Single‐nucleotide polymorphisms (SNPs) are rapidly becoming the standard markers in population genomics studies; however, their use in nonmodel organisms is limited due to the lack of cost‐effective approaches to uncover genome‐wide variation, and the large number of individuals needed in the screening process to reduce ascertainment bias. To discover SNPs for population genomics studies in the fungal symbionts of the mountain pine beetle (MPB), we developed a road map to discover SNPs and to produce a genotyping platform. We undertook a whole‐genome sequencing approach of Leptographium longiclavatum in combination with available genomics resources of another MPB symbiont, Grosmannia clavigera. We sequenced 71 individuals pooled into four groups using the Illumina sequencing technology. We generated between 27 and 30 million reads of 75 bp that resulted in a total of 1, 181 contigs longer than 2 kb and an assembled genome size of 28.9 Mb (N50 = 48 kb, average depth = 125x). A total of 9052 proteins were annotated, and between 9531 and 17 266 SNPs were identified in the four pools. A subset of 206 genes (containing 574 SNPs, 11% false positives) was used to develop a genotyping platform for this species. Using this roadmap, we developed a genotyping assay with a total of 147 SNPs located in 121 genes using the Illumina® Sequenom iPLEX Gold. Our preliminary genotyping (success rate = 85%) of 304 individuals from 36 populations supports the utility of this approach for population genomics studies in other MPB fungal symbionts and other fungal nonmodel species.  相似文献   

13.
丝状真菌是具有高效分泌蛋白质潜力的真核表达系统, 能对蛋白质进行翻译后修饰, 如蛋白质糖基化等; 并且比植物、昆虫和哺乳动物细胞具有更快的生长速率。近年来, 随着真菌分子遗传技术和菌种改良策略的进步, 尤其是真菌基因组学的发展, 利用丝状真菌生产异源蛋白越来越受到关注。综述了丝状真菌作为细胞工厂生产异源蛋白的最新探索与进展, 其中包括功能基因组学在蛋白表达与分泌研究中的应用, 同时探讨了异源蛋白表达和生产的改进策略。  相似文献   

14.
丝状真菌高效表达异源蛋白研究进展   总被引:2,自引:0,他引:2  
丝状真菌是具有高效分泌蛋白质潜力的真核表达系统, 能对蛋白质进行翻译后修饰, 如蛋白质糖基化等; 并且比植物、昆虫和哺乳动物细胞具有更快的生长速率。近年来, 随着真菌分子遗传技术和菌种改良策略的进步, 尤其是真菌基因组学的发展, 利用丝状真菌生产异源蛋白越来越受到关注。综述了丝状真菌作为细胞工厂生产异源蛋白的最新探索与进展, 其中包括功能基因组学在蛋白表达与分泌研究中的应用, 同时探讨了异源蛋白表达和生产的改进策略。  相似文献   

15.
阐明不同生物基因组DNA序列信息及破译相关遗传学背景的基因组学是生物学和医学研究的核心学科.最近十年来真菌基因组学研究发生根本性的变化,真菌已成为真核生物基因组研究的最佳模式生物.至2008年6月,近80种隶属于真菌,微孢子虫和卵菌的全基因组序列公布,代表着最广泛的真核生物,它们的基因组大小从2.5 Mb~81.5 Mb.本丈整理了这些数据的相关信息.  相似文献   

16.
17.
18.
The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet’s stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.  相似文献   

19.
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen‐induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.  相似文献   

20.
Agrobacterium tumefaciens-mediated transformation (ATMT) has become a prevalent tool for functional genomics of fungi, but our understanding of T-DNA integration into the fungal genome remains limited relative to that in plants. Using a model plant-pathogenic fungus, Magnaporthe oryzae, here we report the most comprehensive analysis of T-DNA integration events in fungi and the development of an informatics infrastructure, termed a T-DNA analysis platform (TAP). We identified a total of 1110 T-DNA-tagged locations (TTLs) and processed the resulting data via TAP. Analysis of the TTLs showed that T-DNA integration was biased among chromosomes and preferred the promoter region of genes. In addition, irregular patterns of T-DNA integration, such as chromosomal rearrangement and readthrough of plasmid vectors, were also observed, showing that T-DNA integration patterns into the fungal genome are as diverse as those of their plant counterparts. However, overall the observed junction structures between T-DNA borders and flanking genomic DNA sequences revealed that T-DNA integration into the fungal genome was more canonical than those observed in plants. Our results support the potential of ATMT as a tool for functional genomics of fungi and show that the TAP is an effective informatics platform for handling data from large-scale insertional mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号