首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gow NA 《Current biology : CB》2005,15(13):R509-R511
The genome sequence of the 'asexual' human pathogenic fungus Aspergillus fumigatus suggests it has the capability to undergo mating and meiosis. That this organism engages in clandestine sexual activity is also suggested by observations of two equally distributed complementary mating types in nature, the expression of mating type genes and evidence of recent genome recombination events.  相似文献   

2.
Large-scale genome comparisons have shown that no gene sets are shared exclusively by both Aspergillus fumigatus and any other human pathogen sequenced to date, such as Candida or Cryptococcus species. By contrast, and in agreement with the environmental occurrence of this fungus in decaying vegetation, the enzymatic machinery required by a fungus to colonize plant substrates has been found in the A. fumigatus genome. In addition, the proteome of this fungus contains numerous efflux pumps, including >100 major facilitators that help the fungus to resist either natural aggressive molecules present in the environment or antifungal drugs in humans. Environment sensing, counteracting reactive oxidants, and retrieving essential nutriments from the environment are general metabolic traits that are associated with the growth of the saprotrophic mold A. fumigatus in an unfriendly environment such as its human host.  相似文献   

3.
The genome sequencing of the fungus Aspergillus niger uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a non-reducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene we name albA is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of the naphtho-γ-pyrone precursor for the 1,8-dihydroxynaphthalene (DHN) melanin/spore pigment. Our results show that the A. nigeralbA PKS is responsible for both the production of the spore pigment precursor and a family of naphtho-γ-pyrones commonly found in significant quantity in A. niger culture extracts. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.  相似文献   

4.
In recent years the filamentous fungus Aspergillus fumigatus has become a significant cause of infection in man and as such has become the focus of much study. It is thought to be the leading mould pathogen in leukaemia and transplant patients and is responsible for mortality in a large number of individuals with immunological disorders. In an attempt to develop molecular mutagenesis tools for assessment of this organism, the genome of A. fumigatus was analysed to identify possible functional transposable elements. An apparently intact Fot1/Pogo type transposon with 65% identity to the active Tan1 element of Aspergillus niger was identified and designated Aft1. Aft1 is a 1.9kb element present in multiple (>20) highly conserved copies. It encodes a 332 amino acid transposase which contains all the functional motifs required for transposition. In addition, the transposase was expressed in cultures grown at 37 degrees C in all three strains assessed and excision analysis suggests Aft1 may be active and of use in transposon tagging experiments. Southern hybridisation patterns indicate that Aft1 is widely distributed amongst clinical isolates of A. fumigatus with considerable variation in genomic localisation. A comprehensive analysis of the genomic localisation of Aft1 in the sequenced strain AF293 show that one insertion is 30 bases upstream of a predicted gene encoding a G-protein coupled receptor. Expression analysis indicates that this gene has been inactivated by the insertion.  相似文献   

5.
In recent years the filamentous fungus Aspergillus fumigatus has become a significant cause of infection in man and as such has become the focus of much study. It is thought to be the leading mould pathogen in leukaemia and transplant patients and is responsible for mortality in a large number of individuals with immunological disorders. In an attempt to develop molecular mutagenesis tools for assessment of this organism, the genome of A. fumigatus was analysed to identify possible functional transposable elements. An apparently intact Fot1/Pogo type transposon with 65% identity to the active Tan1 element of Aspergillus niger was identified and designated Aft1. Aft1 is a 1.9kb element present in multiple (>20) highly conserved copies. It encodes a 332 amino acid transposase which contains all the functional motifs required for transposition. In addition, the transposase was expressed in cultures grown at 37 degrees C in all three strains assessed and excision analysis suggests Aft1 may be active and of use in transposon tagging experiments. Southern hybridisation patterns indicate that Aft1 is widely distributed amongst clinical isolates of A. fumigatus with considerable variation in genomic localisation. A comprehensive analysis of the genomic localisation of Aft1 in the sequenced strain AF293 show that one insertion is 30 bases upstream of a predicted gene encoding a G-protein coupled receptor. Expression analysis indicates that this gene has been inactivated by the insertion.  相似文献   

6.
Glycosylphosphatidylinositol (GPI) represents a mechanism for the attachment of proteins to the plasma membrane found in all eukaryotic cells. GPI biosynthesis has been mainly studied in parasites, yeast, and mammalian cells. Aspergillus fumigatus, a filamentous fungus, produces GPI-anchored molecules, some of them being essential in the construction of the cell wall. An in vitro assay was used to study the GPI biosynthesis in the mycelium form of this organism. In the presence of UDP-GlcNAc and coenzyme A, the cell-free system produces the initial intermediates of the GPI biosynthesis: GlcNAc-PI, GlcN-PI, and GlcN-(acyl)PI. Using GDP-Man, two types of mannosylation are observed. First, one or two mannose residues are added to GlcN-PI. This mannosylation, never described in fungi, does not require dolichol phosphomannoside (Dol-P-Man) as the monosaccharide donor. Second, one to five mannose residues are added to GlcN-(acyl)PI using Dol-P-Man as the mannose donor. The addition of ethanolamine phosphate groups to the first, second, and third mannose residue is also observed. This latter series of GPI intermediates identified in the A. fumigatus cell-free system indicates that GPI biosynthesis in this filamentous fungus is similar to the mammalian or yeast systems. Thus, these biochemical data are in agreement with a comparative genome analysis that shows that all but 3 of the 21 genes described in the Saccharomyces cerevisiae GPI pathways are found in A. fumigatus.  相似文献   

7.
Jean-Paul's research interest is focused on the analysis of the structure and biosynthesis of the cell wall of Aspergillus fumigatus and its interaction with the host. The A. fumigatus genome will now be used to understand multifactorial systems such as fungal virulence of an opportunistic fungus in an immunocompromised host and assembly and regulation of cell wall polymer rearrangement under the control of the environment.  相似文献   

8.
Infections with the filamentous fungus Aspergillus fumigatus are among the most devastating of the systemic mycoses. Unlike most primary pathogens, which possess virulence traits that developed in association with a host organism, evidence suggests that the virulence of A. fumigatus entails a collection of 'street-smart' attributes that have evolved to resist the adverse selection pressures encountered in decaying vegetation. These features enhance the overall competitiveness of the organism in its environmental niche but are also thought to promote growth and survival in a human host. Although many of the genes that are responsible for these characteristics do not fit into the classical definition of a virulence factor, they are nonetheless important to the pathogenesis of aspergillosis and may therefore provide novel opportunities for antifungal development.  相似文献   

9.
The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin.  相似文献   

10.
11.
12.
13.
14.
Ergot alkaloids are mycotoxins that interact with several monoamine receptors, negatively affecting cardiovascular, nervous, reproductive, and immune systems of exposed humans and animals. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, can produce ergot alkaloids in broth culture. The objectives of this study were to determine if A. fumigatus accumulates ergot alkaloids in a respirable form in or on its conidia, to quantify ergot alkaloids associated with conidia produced on several different substrates, and to measure relevant physical properties of the conidia. We found at least four ergot alkaloids, fumigaclavine C, festuclavine, fumigaclavine A, and fumigaclavine B (in order of abundance), associated with conidia of A. fumigatus. Under environmentally relevant conditions, the total mass of ergot alkaloids often constituted >1% of the mass of the conidium. Ergot alkaloids were extracted from conidia produced on all media tested, and the greatest quantities were observed when the fungus was cultured on latex paint or cultured maize seedlings. The values for physical properties of conidia likely to affect their respirability (i.e., diameter, mass, and specific gravity) were significantly lower for A. fumigatus than for Aspergillus nidulans, Aspergillus niger, and Stachybotrys chartarum. The demonstration of relatively high concentrations of ergot alkaloids associated with conidia of A. fumigatus presents opportunities for investigations of potential contributions of the toxins to adverse health effects associated with the fungus and to aspects of the biology of the fungus that contribute to its success.  相似文献   

15.
Analysis of the genome of the human pathogen, Aspergillus fumigatus, revealed the presence of several putative glutathione transferase (GST) open reading frames. Three A. fumigatus GST genes, termed gstA, B, and C, were cloned and recombinant proteins expressed in Escherichia coli. Functional analysis of recombinant gstA-C confirms that the enzymes exhibit GST activity and glutathione peroxidase activity. RT-PCR confirmed low basal expression of gstA and gstC which was markedly up-regulated (at least 4x-10x) in the presence of either H2O2 or 1-chloro-2,4-dinitrobenzene (CDNB). GstB expression was only observed in the presence of CDNB. These results demonstrate for the first time the existence of three functional GSTs in A. fumigatus and strongly suggest a role for these enzymes in the response of the organism to both oxidative stress and xenobiotic presence.  相似文献   

16.
An Aspergillus fumigatus extracellular alkaline protease (ALP) which is an enzyme of the subtilisin family is a potential virulent factor of the fungus. The gene encoding ALP was isolated from a genomic library made from DNA of an A. fumigatus isolate. The nucleotide sequence of this gene was compared to that of a cDNA encoding A. oryzae ALP and to that of a cDNA from A. fumigatus encoding the mature ALP protein. Mature A. fumigatus ALP contains 282 amino acids and is encoded by three exons. The pre-proenzyme has a leader sequence of 121 amino acids.  相似文献   

17.
Identification of genes encoding type III polyketide synthase (PKS) superfamily members in the industrially useful filamentous fungus, Aspergillus oryzae, revealed that their distribution is not specific to plants or bacteria. Among other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus), A. oryzae was unique in possessing four chalcone synthase (CHS)-like genes (csyA, csyB, csyC, and csyD). Expression of csyA, csyB, and csyD genes was confirmed by RT-PCR. Comparative genome analyses revealed single putative type III PKS in Neurospora crassa and Fusarium graminearum, two each in Magnaporthe grisea and Podospora anserina, and three in Phenarocheate chrysosporium, with a phylogenic distinction from bacteria and plants. Conservation of catalytic residues in the CHSs across species implicated enzymatically active nature of these newly discovered homologs.  相似文献   

18.
Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum   总被引:2,自引:0,他引:2  
AIMS: Natural fungal products were screened for antifungal compounds. The mode of action of one of the hits found and the taxonomy of the producing organism were analysed. METHODS AND RESULTS: An extract from a Trichoderma species showed a more potent activity in an agar-based assay against the null mutant fks1::HIS strain than against the wild-type strain, suggesting that it could contain a glucan synthesis inhibitor. The active component was identified as the known compound ergokonin A. The compound exhibited activity against Candida and Aspergillus species, but was inactive against Cryptococcus species. It induced alterations in the hyphal morphology of Aspergillus fumigatus. The identification of the producing isolate was confirmed by sequencing of the rDNA internal transcribed spacers and comparison with the sequences of other Trichoderma species. The analysis showed that the producing fungus had a high homology with other strains classified as Trichoderma longibrachiatum and its teleomorph Hypocrea schweinitzii. CONCLUSIONS: The antifungal activity spectrum of ergokonin A and the morphology alterations induced on A. fumigatus are consistent with glucan synthesis as the target for ergokonin A. The production of ergokonin A is not uncommon, but is probably restricted to Trichoderma species. SIGNIFICANCE AND IMPACT OF THE STUDY: The discovery that ergokonin A could be an inhibitor of glucan synthesis, having a structure very different to other inhibitors, increases the likelihood that orally active agents with this fungal-specific mode of action may be developed.  相似文献   

19.
Asp f I is a major 18-kDa Aspergillus fumigatus allergen and a member of the mitogillin family of cytotoxins. The nucleotide sequence of the Asp f I gene was determined by sequencing polymerase chain reaction products amplified from A. fumigatus spore DNA. The entire 678-bp DNA includes an 81-bp leader sequence, preceding the N-terminal alanine codon, a 52-bp intron, and a 444-bp open reading frame, encoding a 149-amino acid protein (M(r) 16,899), which is 99% homologous to mitogillin from Aspergillus restrictus. A mAb-based ELISA was used to compare Asp f I levels in spores, mycelia, and culture filtrate, and to determine the kinetics of allergen production. Disrupted hyphae or spore extracts had a 1000-fold lower level of Asp f I than culture filtrate, suggesting that germination of spores and growth of the fungus are essential for allergen production. Asp f I levels in A. fumigatus and A. restrictus peaked at day 3 (0.87 to 12.1 micrograms/ml), however, the allergen was not detected in Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus nidulans cultures (< 1.5 ng/ml) on either days 3 or 8. Northern analysis confirmed that Asp f I mRNA was detected only in A. fumigatus and A. restrictus, but not in the other four Aspergillus spp. Asp f I-specific DNA was generated after polymerase chain reaction amplification of genomic mycelial DNA obtained from A. fumigatus and A. restrictus, but not from the other Aspergillus spp. The results show that Asp f I is selectively expressed in A. fumigatus, and suggest that this cytotoxin could be a specific virulence factor for A. fumigatus.  相似文献   

20.
MgtC is important for the survival of several bacterial pathogens in macrophages and for growth under magnesium limitation. Among eukaryotes, a gene homologous to mgtC was found only in the pathogenic fungus Aspergillus fumigatus. Our data show that the A. fumigatus MgtC (AfuMgtC) protein does not have the same function as the bacterial MgtC proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号