首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Static contraction of skeletal muscle evokes increases in blood pressure and heart rate. Previous studies suggested that the dorsal horn of the spinal cord is the first synaptic site responsible for those cardiovascular responses. In this study, we examined the role of ATP-sensitive P2X receptors in the cardiovascular responses to contraction by microdialyzing the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) into the L7 level of the dorsal horn of nine anesthetized cats. Contraction was elicited by electrical stimulation of the L7 and S1 ventral roots. Blockade of P2X receptor attenuated the contraction induced-pressor response [change in mean arterial pressure (delta MAP): 16 +/- 4 mmHg after 10 mM PPADS vs. 42 +/- 8 mmHg in control; P < 0.05]. In addition, the pressor response to muscle stretch was also blunted by PPADS (delta MAP: 27 +/- 5 mmHg after PPADS vs. 49 +/- 8 mmHg in control; P < 0.05). Finally, activation of P2X receptor by microdialyzing 0.5 mM alpha,beta-methylene into the dorsal horn significantly augmented the pressor response to contraction. This effect was antagonized by prior PPADS dialysis. These data demonstrate that blockade of P2X receptors in the dorsal horn attenuates the pressor response to activation of muscle afferents and that stimulation of P2X receptors enhances the reflex response, indicating that P2X receptors play a role in mediating the muscle pressor reflex at the first synaptic site of this reflex.  相似文献   

2.
This study was conducted to test the hypothesis that the cytochrome P-450 (CYP450) metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the afferent arteriolar response to P2 receptor activation. Afferent arteriolar responses to ATP, the P2X agonist, alpha,beta-methylene ATP and the P2Y agonist UTP were determined before and after treatment with the selective CYP450 hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or the 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE). Stimulation with 1.0 and 10 microM ATP elicited an initial preglomerular vasoconstriction of 12 +/- 1% and 45 +/- 4% and a sustained vasoconstriction of 11 +/- 1% and 11 +/- 2%, respectively. DDMS or 20-HEDE significantly attenuated the sustained afferent arteriolar constrictor response to ATP. alpha,beta-Methylene ATP (1 microM) induced a rapid initial afferent vasoconstriction of 64 +/- 3%, which partially recovered to a stable diameter 10 +/- 1% smaller than control. Both DDMS and 20-HEDE significantly attenuated the initial vasoconstriction and abolished the sustained vasoconstrictor response to alpha,beta-methylene ATP. UTP decreased afferent diameter by 50 +/- 5% and 20-HEDE did not change this response. In addition, the ATP-induced increase in the intracellular Ca2+ concentration in preglomerular microvascular smooth muscle cells was significantly attenuated by 20-HEDE. Taken together, these results are consistent with the hypothesis that the CYP450 metabolite 20-HETE participates in the afferent arteriolar response to activation of P2X receptors.  相似文献   

3.
A previous report from this laboratory demonstrated that the ATP-sensitive P2X receptor-mediated muscle pressor reflex was augmented in rats with heart failure (HF). The purpose of this study was to better understand the underlying mechanisms for this greater response in HF rats. We examined 1) responsiveness of the P2X receptor to alpha,beta-methylene ATP (alpha,beta-me-ATP), a P2X receptor agonist, in control and HF rats induced by myocardial infarction (MI); 2) the relationship between P2X-induced blood pressure response and left ventricular (LV) function; and 3) the expression of P2X receptors in the dorsal root ganglion (DRG) of control rats and rats with HF. Eight to 14 wk after coronary artery ligation, the severity of the MI was determined by echocardiography. In the first group of the experiment, alpha,beta-me-ATP (0.0625, 0.125, 0.25, and 0.5 mM) was injected into the arterial blood supply of the hindlimb muscles to evoke a pressor response in 17 decerebrated rats (6 controls, 6 small MIs with infarcts of the LV between 10 and 35%, and 5 large MIs with infarcts >35%). The P2X agonist increased blood pressure, and the effect was significantly accentuated in large MI rats compared with small MI rats and control rats. A significant correlation was observed between alpha,beta-me-ATP-evoked pressor response and the LV fractional shortening, an index of LV function. In the second group of the experiment, immunocytochemistry was used to examine the immunoreactivity of P2X receptor in the DRG neurons of small diameter fibers in six healthy control rats, five small MI, and five large MI rats. The percentage of P2X immunostaining-positive neurons in the DRG was markedly greater in large MI rats (52% vs. 29% in controls and 34% in small MIs, P < 0.05). In conclusion, our findings demonstrate that 1) muscle afferent-mediated pressor response of P2X activation was exaggerated in MI animals, and the responsiveness was related to the degree of LV dysfunction; and 2) augmented reflex response was associated with upregulated P2X receptors in the DRG neurons of thin fiber afferent nerves following MI. The data suggest that P2X-mediated responsiveness in the processing of muscle afferent signals may have important implications for understanding cardiovascular responses to exercise in HF.  相似文献   

4.
Vascular endothelial cells that are in direct contact with blood flow are exposed to fluid shear stress and regulate vascular homeostasis. Studies report endothelial cells to release ATP in response to shear stress that in turn modulates cellular functions via P2 receptors with P2X4 mediating shear stress-induced calcium signaling and vasodilation. A recent study shows that a loss-of-function polymorphism in the human P2X4 resulting in a Tyr315>Cys variant is associated with increased pulse pressure and impaired endothelial vasodilation. Although the importance of shear stress-induced Krüppel-like factor 2 (KLF2) expression in atheroprotection is well studied, whether ATP regulates KLF2 remains unanswered and is the objective of this study. Using an in vitro model, we show that in human umbilical vein endothelial cells (HUVECs), apyrase decreased shear stress-induced KLF2, KLF4, and NOS3 expression but not that of NFE2L2. Exposure of HUVECs either to shear stress or ATPγS under static conditions increased KLF2 in a P2X4-dependent manner as was evident with both the receptor antagonist and siRNA knockdown. Furthermore, transient transfection of static cultures of human endothelial cells with the Tyr315>Cys mutant P2X4 construct blocked ATP-induced KLF2 expression. Also, P2X4 mediated the shear stress-induced phosphorylation of extracellular regulated kinase-5, a known regulator of KLF2. This study demonstrates a major physiological finding that the shear-induced effects on endothelial KLF2 axis are in part dependent on ATP release and P2X4, a previously unidentified mechanism.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9442-3) contains supplementary material, which is available to authorized users.  相似文献   

5.
Activation of P2X3 and P2X2/3 receptors (P2X3R/P2X2/3R), ionotropic ATP receptor subtypes, in primary sensory neurons is involved in neuropathic pain, a debilitating chronic pain that occurs after peripheral nerve injury. However, the underlying mechanisms remain unknown. We investigated the role of cytosolic phospholipase A2 (cPLA2) as a downstream molecule that mediates the P2X3R/P2X2/3R-dependent neuropathic pain. We found that applying ATP to cultured dorsal root ganglion (DRG) neurons increased the level of Ser505-phosphorylated cPLA2 and caused translocation of Ser505-phosphorylated cPLA2 to the plasma membrane. The ATP-induced cPLA2 activation was inhibited by a selective antagonist of P2X3R/P2X2/3R and by a selective inhibitor of cPLA2. In the DRG in vivo , the number of cPLA2-activated neurons was strikingly increased after peripheral nerve injury but not after peripheral inflammation produced by complete Freund's adjuvant. Pharmacological blockade of P2X3R/P2X2/3R reversed the nerve injury-induced cPLA2 activation in DRG neurons. Moreover, administering the cPLA2 inhibitor near the DRG suppressed nerve injury-induced tactile allodynia, a hallmark of neuropathic pain. Our results suggest that P2X3R/P2X2/3R-dependent cPLA2 activity in primary sensory neurons is a key event in neuropathic pain and that cPLA2 might be a potential target for treating neuropathic pain.  相似文献   

6.
Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release   总被引:10,自引:0,他引:10  
The mechanisms underlying caspase-1 activation and IL-1 processing during inflammatory activation of monocytes and macrophages are not well defined. Here, we describe an in vitro proteolytic processing assay that allows for comparison of caspase-1 regulatory components in a cell-free system separately from the confounding issue of IL-1 secretion. Analysis of in vitro IL-1 and caspase-1 processing in lysates from unstimulated Bac1 murine macrophages indicated a slow rate of basal caspase-1 activation and proteolytic maturation of IL-1. In contrast, brief (5 min) treatment of intact macrophages with extracellular ATP (as an activator of the P2X7 receptor) or nigericin before cell lysis markedly accelerated the in vitro processing of caspase-1 and IL-1. This acceleration of in vitro processing was strictly dependent on loss of intracellular K+ from the intact cells. The induction of in vitro caspase-1 activation by lysis per se or by K+ loss before lysis was sensitive to pretreatment of intact macrophages with the tyrphostin AG-126 or bromoenol lactone, an inhibitor of Ca2+-independent phospholipase A2. Caspase-1 activation and IL-1 processing in lysates from unstimulated macrophages were also accelerated by addition of recombinant ASC, a previously identified adapter protein that directly associates with caspase-1. These data indicate that increased K+ efflux via P2X7 nucleotide receptor stimulation activates AG-126- and bromoenol lactone-sensitive signaling pathways in murine macrophages that result in stably maintained signals for caspase-1 regulation in cell-free assays. AG-126; ASC; bromoenol lactone; IL-1; inflammation  相似文献   

7.
Li  Xing  Hu  Bing  Wang  Li  Xia  Qingqing  Ni  Xiuqin 《Molecular biology reports》2021,48(3):2133-2142
Molecular Biology Reports - P2X7R activation contributes to the pathogenesis of pulmonary hypertension. However, the molecular mechanism through which P2X7R participates in pulmonary vascular...  相似文献   

8.
Activation of purinergic P2X receptors and transient receptor potential vanilloid type 1 (TRPV1) on muscle afferent nerve evokes the pressor response. Because P2X and TRPV1 receptors are sensitive to changes in pH, the aim of this study was to examine the effects of muscle acidification on those receptor-mediated cardiovascular responses. In decerebrate rats, the pH in the hindlimb muscle was adjusted by infusing acidic Ringer solutions into the femoral artery. Dialysate was then collected using microdialysis probes inserted into the muscles, and pH was measured. The interstitial pH was 7.53+/-0.01, 7.22+/-0.02, 6.94+/-0.04, and 6.59+/-0.03 in response to arterial infusion of the Ringer solution at pH 7.4, 6.5, 5.5, and 4.5, respectively. Femoral arterial injection of alpha,beta-methylene-ATP (P2X receptor agonist) in the concentration of 0.25 mM (volume, 0.15-0.25 ml; injection duration, 1 min) at the infused pH of 7.4, 6.5, and 5.5 increased mean arterial pressure (MAP) by 29+/-2, 24+/-3, and 21+/-3 mmHg, respectively (P<0.05, pH 5.5 vs. pH 7.4). When pH levels in the infused solution were 7.4, 6.5, 5.5, and 4.5, capsaicin (1 microg/kg), a TRPV1 agonist, was injected into the artery. This elevated MAP by 29+/-4, 33+/-2, 35+/-3, and 40+/-3 mmHg, respectively (P<0.05, pH 4.5 vs. pH 7.4). Furthermore, blocking acid-sensing ion channel (ASIC) blunted pH effects on TRPV1 response. Our data indicate that 1) muscle acidosis attenuates P2X-mediated pressor response but enhances TRPV1 response; 2) exaggerated TRPV1 response may require lower pH in muscle, and the effect is likely to be mediated via ASIC mechanisms. This study provides evidence that muscle pH may be important in modulating P2X and TRPV1 responsiveness in exercising muscle.  相似文献   

9.
The goal of this study was to determine the role of the pontine lateral parabrachial nucleus (LPBN) in the compensatory responses to blood loss. Conscious unrestrained rats with complete, partial, or sham bilateral ibotenic acid lesions of the LPBN were subjected to a hypotensive 16-ml/kg blood withdrawal via arterial catheter. Complete lesions (LPBNx) encompassed the entire LPBN and extended into the ventrolateral parabrachial region to encroach on the Kolliker-Fuse nucleus. Partial lesions were restricted to the body of the LPBN and spared the outer rim of the external lateral subnucleus of the LPBN. In all three groups, serum corticosterone concentration and plasma renin activity increased four- to fivefold after hemorrhage (P < 0.01), and immunocytochemistry demonstrated numerous Fos-positive neurons in the hypothalamic supraoptic nucleus. However, the cardiovascular responses to hypotensive blood loss differed for complete and partial lesions. Blood pressure failed to recover in LPBNx rats and was significantly lower in LPBNx (66 +/- 4 mmHg) than in rats with partial or sham lesions (98 +/- 4 and 85 +/- 5 mmHg, respectively) at 40 min posthemorrhage. In contrast, rats with partial lesions had a significant attenuation of the posthemorrhage bradycardia. This implies that a population of neurons within the body of the LPBN is essential for full expression of the bradycardia that accompanies hemorrhagic hypotension, whereas the ventrolateral parabrachial region is essential for normal restoration of arterial pressure after hypotensive hemorrhage.  相似文献   

10.
P2X receptors are expressed on different functional groups of primary afferent fibers. P2X receptor-mediated sensory inputs can be either innocuous or nociceptive, depending on which dorsal horn regions receive these inputs. We provide a brief review of P2X receptor-mediated purinergic sensory pathways to different regions in the dorsal horn. These P2X purinergic pathways are identified in normal animals, which provides insights into their physiological functions. Future studies on P2X purinergic pathways in animal models of pathological conditions may provide insights on how P2X receptors play a role in pathological pain states.  相似文献   

11.
We examined the hypothesis that activation of the muscle metaboreflex during dynamic exercise would augment influences tending to cause a rise in arginine vasopressin, plasma renin activity, and catecholamines during dynamic exercise in humans. Ten healthy adults performed 30 min of supine cycle ergometer exercise at approximately 50% of peak oxygen consumption with or without moderate muscle metaboreflex activation by application of 35 mmHg lower body positive pressure (LBPP). Application of LBPP during the first 15 or last 15 min of exercise increased mean arterial blood pressure, plasma lactate concentration, and minute ventilation, indicating an activation of the muscle metaboreflex. These changes were rapidly reversed when LBPP was removed. During exercise at this intensity, LBPP augmented the release of arginine vasopressin and catecholamines but not of plasma renin activity. These results suggest that, although in humans hormonal responses are induced by moderate activation of the muscle metaboreflex during dynamic exercise, the thresholds for these responses may not be uniform among the various glands and hormones.  相似文献   

12.
13.
P2X7 receptor-mediated apoptosis of human cervical epithelial cells   总被引:1,自引:0,他引:1  
Normal human ectocervical epithelial (hECE) cells undergo apoptosis in culture. Baseline apoptosis could be increased by shifting cells to serum-free medium and blocked by lowering extracellular calcium. Treatment with the ATPase apyrase attenuated baseline apoptosis, suggesting that extracellular ATP and purinergic mechanisms control the apoptosis. Treatment with ATP and the P2X7 receptor analog 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) increased apoptosis significantly, in a time- and dose-related manner. The threshold of ATP effect was 0.5 µM in hECE cells and 1 µM in CaSki cancer cells. The apoptotic effect of BzATP was additive in part to that of tumor necrosis factor (TNF)-, and it could be attenuated by lowering extracellular calcium and by treatment with the caspase-9 inhibitor Leu-Glu-His-Asp-O-methyl-fluoromethylketone (LEHD-FMK). Treatment with BzATP activated caspase-9, and, in contrast to TNF-, it had only a mild effect on caspase-8. Both BzATP and TNF- activated caspase-3, suggesting that BzATP activates predominantly the mitochondrial apoptotic pathway. Both hECE and CaSki cells secrete ATP into the extracellular fluid, and mean ATP activity in conditioned medium was 0.5 µM, which is in the range of values that suffice to activate the P2X7 receptor. On the basis of these findings we propose a novel autocrine-paracrine mechanism of cervical cell apoptosis that operates by P2X7 receptor control of cytosolic calcium and utilizes the mitochondrial apoptotic pathway. cervix; epithelium; ATP; 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate  相似文献   

14.
EphB6 is the most recently identified member of the Eph receptor tyrosine kinase family. EphB6 is primarily expressed in thymocytes and a subpopulation of T cells, suggesting that it may be involved in regulation of T lymphocyte differentiation and functions. We show here that overexpression of EphB6 in Jurkat T cells and stimulation with the EphB6 ligand, ephrin-B1, results in the selective inhibition of TCR-mediated activation of JNK but not the MAPK pathway. EphB6 appears to suppress the JNK pathway by preventing T cell receptor (TCR)-induced activation of the small GTPase Rac1, a critical event in initiating the JNK cascade. Furthermore, EphB6 blocked anti-CD3-induced secretion of IL-2 and CD25 expression in a ligand-dependent manner. Dominant negative EphB6 suppressed the inhibitory activity of the endogenous receptor and enhanced anti-CD3-induced JNK activation, CD25 expression, and IL-2 secretion, confirming the requirement for EphB6-specific signaling. Activation of the JNK pathway and the establishment of an IL-2/IL-2R autocrine loop have been shown to play a role in the negative selection of CD4(+)CD8(+) self-reacting thymocytes. In agreement, stimulation of murine thymocytes with ephrin-B1 not only blocked anti-CD3-induced CD25 up-regulation and IL-2 production, but also inhibited TCR-mediated apoptosis. Thus, EphB6 may play an important role in regulating thymocyte differentiation and modulating responses of mature T cells.  相似文献   

15.
It is well known that theexercise pressor reflex (EPR) is mediated by group III and IV skeletalmuscle afferent fibers, which exhibit unique discharge responses tomechanical and chemical stimuli. Based on the difference in dischargepatterns of group III and IV muscle afferents, we hypothesized thatactivation of mechanically sensitive (MS) fibers would evoke adifferent pattern of cardiovascular responses compared with activationof both MS and chemosensitive (CS) fibers. Experiments were conductedin chloralose-urethane-anesthetized cats (n = 10).Passive muscle stretch was used to activate MS afferents, andelectrically evoked contraction of the triceps surae was used toactivate both MS and CS muscle afferents. No significant differenceswere shown in reflex heart rate and mean arterial pressure (MAP)responses between passive muscle stretch and evoked muscle contraction. However, when the reflex responses were matched according totension-time index (TTI), the peak MAP response (67 ± 4 vs.56 ± 4 mmHg, P < 0.05) was significantly greaterat higher TTI (427 ± 18 vs. 304 ± 13 kg · s, highvs. low TTI, P < 0.05), despite different modes ofafferent fiber activation. When the same mode of afferent fiberactivation was compared, the peak MAP response (65 ± 7 vs. 55 ± 5 mmHg, P < 0.05) was again predicted bythe magnitude of TTI (422 ± 24 vs. 298 ± 19 kg · s,high vs. low TTI, P < 0.05). Total sensory input fromskeletal muscle ergoreceptors, as predicted by TTI and not the modalityof afferent fiber activation (muscle contraction vs. passive stretch),is suggested to be the primary determinant of the magnitude of theEPR-evoked cardiovascular response.

  相似文献   

16.
Establishment of an assay for P2X7 receptor-mediated cell death   总被引:1,自引:0,他引:1  
The P2X7 receptor, an ATP-gated cation channel, induces cell death in immune cells and is involved in neurodegenerative diseases. Although the receptor plays various roles in these diseases, the cellular mechanisms involved are poorly understood and antagonists are limited. Here, the development of a cell-based assay for human P2X7 receptor is reported. We established permanent lines of HEK 293 cells expressing a high level of hP2X7 receptor. Functional activity of the hP2X7 receptor was confirmed by whole-cell patch recording of ATP-induced ion currents. Prolonged exposure to ATP resulted in death of the hP2X7-expressing HEK 293 cells and this cell death could be quantified. Two known P2X7 antagonists, PPADS and KN-62, blocked ATP-induced death in a concentration-dependent manner. Thus, this assay can be used to screen for new antagonists of hP2X7 receptors.  相似文献   

17.
The antibiotic polymyxin B modulates P2X7 receptor function   总被引:3,自引:0,他引:3  
The natural peptide polymyxin B (PMB) is a well-known and potent antibiotic that binds and neutralizes bacterial endotoxin (LPS), thus preventing its noxious effects among LPS-mediated endotoxin shock in animal models. We have investigated the effect of PMB on responses mediated by the P2X(7)R in HEK293 and K562 cells transfected with P2X(7) cDNA and in mouse and human macrophages. In addition, in view of the potential exploitation of P2X(7)-directed agonists in antitumor therapy, we also investigated the effect of PMB in B lymphocytes from patients affected by chronic lymphocytic leukemia. PMB, at an optimal concentration dependent on the given cell type, greatly potentiated the effect of nucleotide-mediated P2X(7) stimulation. In particular, ATP-mediated Ca(2+) influx, plasma membrane permeabilization, and cytotoxicity were enhanced to an extent that, in the presence of PMB, cells were killed by otherwise ineffective nucleotide concentrations. The synergistic effect due to the combined application of ATP and PMB was prevented by incubation with the irreversible P2X blocker oxidized ATP (oATP), but not with the reversible antagonist 1-(N,O-bis(1,5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl)-4-phenilpiperazine (KN-62). Cells lacking P2X(7) were fully insensitive to the combined stimulation with PMB and ATP. Furthermore, PMB at the concentrations used had no untoward effects on cell viability. These results point to PMB as a useful tool for the modulation of P2X(7)R function and suggest that care should be used in the evaluation of ATP-stimulated immune cell responses in the presence of PMB as they may not solely be affected by removal of contaminating LPS.  相似文献   

18.
Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent.  相似文献   

19.
P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine.  相似文献   

20.
Cardiac P2X purinergic receptors can mediate an increase in myocyte contractility and a potentially important role in the heart. The P2X(4) receptor (P2X(4)R) is an important subunit of native cardiac P2X receptors. With transgenic mice with cardiac-specific overexpression of P2X(4)R (Tg) used as a model, the objectives here were to characterize the P2X receptor-mediated cellular contractile and Ca(2+) transient effects and to determine the mechanism underlying the receptor-induced increase in myocyte contractility. In response to the agonist 2-methylthioATP (2-meSATP), Tg myocytes showed an increased intracellular Ca(2+) transient, as defined by fura 2 fluorescence ratio, and an enhanced contraction shortening that were unaccompanied by cAMP accumulation or L-type Ca(2+) channel activation. The increased Ca(2+) transient was not associated with any alteration in action potential duration, resting membrane potential, or diastolic fluorescence ratio or rates of rise and decline of the Ca(2+) transient. Simultaneous Ca(2+) transient and contraction measurements did not show any agonist-mediated change in myofilament Ca(2+) sensitivity. However, activation of the overexpressed P2X(4) receptor caused an enhanced SR Ca(2+) loading, as evidenced by a 2-meSATP-evoked increase in the caffeine-induced inward current and Ca(2+) transient. Similar data were obtained in wild-type mouse ventricular myocytes. Thus an increased SR Ca(2+) content, occurring in the absence of cAMP accumulation or L-type Ca(2+) channel activation, is the principal mechanism by which cardiac P2X receptor mediates a stimulatory effect on cardiac myocyte contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号