首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha-(2----8)-linked sialic acid oligosaccharides (NeuAc)n exhibit an unusual degree of heterogeneity in the conformation of their linkages. This was diagnosed by observation in their 13C NMR spectra of an equivalent and unique heterogeneity in the chemical shifts of their anomeric carbons and subsequently confirmed by more comprehensive 1H and 13C NMR studies. In these studies both one-dimensional and two-dimensional experiments were carried out on the trisaccharide (NeuAc)3 and colominic acid. In addition to the unambiguous assignment of the signals in the spectra, these experiments demonstrated that both linkages of (NeuAc)3 differed in conformation from each other and from the inner linkages of colominic acid. The NMR data indicate that these conformational differences extend to both terminal disaccharides of oligosaccharides larger than (NeuAc)5, a result that has considerable physical and biological significance. In the context of the group B meningococcal polysaccharide, it provides an explanation for the conformational epitope of the group B meningococcal polysaccharide, which was proposed on the evidence that (NeuAc)10, larger than the optimum size of an antibody site, was the smallest oligosaccharide able to bind to group B polysaccharide specific antibodies. Because the two terminal disaccharides of (NeuAc)10 differ in conformation to its inner residues, the immunologically functional part of (NeuAc)10 resides in its inner six residues. This number of residues is now consistent with the maximum size of an antibody site.  相似文献   

2.
The carbohydrate moiety of the glycoprotein allergen Ag-54, isolated from the mould Cladosporium herbarum, has been characterised partly, using acetolysis, methylation analysis, and n.m.r. spectroscopy. Ag-54 contained a highly branched galactoglucomannan and two branched mannogluco-oligosaccharide chains. The oligosaccharides contained terminal, (1----4)-, and (1----4,6)-linked alpha-Glc residues and terminal, (1----2)-, and some (1----3)-linked alpha-Man residues. The n.m.r. data indicated the galactoglucomannan to have a main chain made up of (1----6)-linked alpha-Man and (1----4)-linked alpha-Glc residues, with the latter attached to position 6 of alpha-Man residues. Oligosaccharides with (1----6)-linked beta-Galf and (1----2)-linked alpha-Man were attached to the main chain. Acetolysis of the galactoglucomannan yielded linear and branched oligosaccharides. The presence of (1----2,3)-linked alpha-Man residues indicated either that other than (1----6) linkages were present in the main chain or that there was 2,3-branching in the side chains.  相似文献   

3.
The substrate specificity of an endo-(1----4)-beta-D-xylanase of the yeast Cryptococcus albidus was investigated using a series of methyl beta-D-xylotriosides. In addition to (1----4) linkages, the enzyme could cleave (1----3) and (1----2) linkages adjacent to a (1----4) linkage and further from the non-reducing end of the substrate. The enzyme could hydrolyse a (1----3) linkage that attached a terminal xylopyranosyl group to a (1----4)-linked xylobiosyl moiety. The enzyme did not attack alpha-D-xylosidic linkages. The rate of cleavage of (1----4) linkages was much higher than those of other linkages at 0.5mM substrate, but the rates were comparable at 20mM substrate when transglycosylation reactions also occurred that facilitated degradation of the substrates.  相似文献   

4.
Murine monoclonal antibodies, TE-1 and TE-3, generated by immunization with a biosynthetic reaction product containing a terminal Gal beta 1----3GlcNAc structure have been produced and found to react specifically with underivatized type 1 chain lacto-series carbohydrate structures. Detailed analysis of these antibodies, both IgM, indicates two differing classes of epitope specificity. Antibody TE-1 was found to bind preferentially to longer chain carbohydrate structures containing a terminal Gal beta 1----3GlcNAc disaccharide, indicating that optimal antibody binding involved more than recognition of this disaccharide. In contrast, antibody TE-3 was found to bind strongly carbohydrate structures containing terminal Gal beta 1----3GlcNAc structures irrespective of chain length. Modification of core chain structures by addition of fucose and/or sialic acid residues completely abolished antibody binding with either antibody. TLC immunostaining of neutral glycolipids isolated from a variety of human colonic adenocarcinoma cell lines indicated intensely stained bands, particularly with antibody TE-3, which correlated with the level of expression of type 1 chain based glycolipid derivatives. These antibodies are applied to the detailed study of the regulation of synthesis of lacto-series type 1 chain based carbohydrate structures.  相似文献   

5.
Insoluble, light-sensitive polymers linked to maltose, maltotriose, a glycogen-branch point trisaccharide, and panose were synthesized and served in a comparative study as acceptors in the glycogen synthase (UDP-D-glucose:glycogen 4-alpha-D-glucosyltransferase, EC 2.4.1.11) reaction. The highest transfer rate was observed with the maltotrio polymer. Extending the acceptor linearly with (1----4)-linked alpha-D-glucopyranosyl residues improved the transfer, whereas (1----6)-linked alpha-D-glucopyranosyl branches decreased it.  相似文献   

6.
A beta-(1----6)-D-galactosyltransferase has been purified over 2000-fold by affinity chromatography on UDP-p-aminophenyl-Sepharose. The enzyme, from a pellet fraction (8000 x g) of Helix pomatia albumen gland, catalyzes transfer of D-galactose from UDP-galactose to a (1----6) linkage on acceptor H. pomatia galactogen. Three other polymers served as acceptors: beef lung galactan, Lymnaea stagnalis galactogen and arabinogalactan from larch wood. To determine the linkage specificity of the enzyme, it was incubated with UDP-D-galactose and acceptor galactogen that had been tritiated previously by treatment with galactose oxidase and [3H]KBH4. The [3H]galactogen reaction product was recovered, methylated, hydrolyzed and acetylated; tritiated derivatives were identified by mass spectroscopy of effluent fractions separated by gas chromatography. This analysis revealed that (1----6)-linked galactosyl groups had been added to the enzyme-treated acceptor galactogen. Also identified was a hydrolytic enzyme that removed terminal alpha 1,2-linked L-galactosyl residues from H. pomatia galactogen.  相似文献   

7.
An exo-beta-(1----3)-D-galactanase from Driselase, a commercial enzyme preparation from Irpex lacteus (Polyporus tulipiferae) has been purified 166-fold. Apparent molecular weights of the purified enzyme, estimated by denaturing gel electrophoresis and gel filtration, were found to be 51,000 and 42,000, respectively. It hydrolyzed specifically oligosaccharides and polymers of (1----3)-linked beta-D-galactopyranosyl residues, and exhibited a maximal activity toward these substrates at pH 4.6. Based on the mode of the liberation of D-galactose from beta-(1----3)-D-galactan and the methyl beta-glycoside of beta-(1----3)-D-galactopentaose, the enzyme can be classified as an exo-glycanase capable of catalyzing the sequential hydrolytic release of single D-galactosyl residues from the nonreducing termini. The extent of the hydrolysis of the carbohydrate portion of acacia gum and radish arabinogalactan-proteins increased with their decreasing branching. Isolation and characterization of the major products formed from the proteoglycans indicated the action pattern of the enzyme to include the capability of bypassing the branching points. Consequently, the side chains carrying an additional D-galactosyl group at the reducing termini are released as neutral (1----6)-linked beta-D-galactooligosaccharides and their acidic derivatives having a 4-O-methyl-beta-D-glucuronosyl residue as the nonreducing end-group. The specificity and the mode of action showed the enzyme to be a useful tool for analyzing the fine structure of type II arabinogalactans and arabinogalactan-protein conjugates.  相似文献   

8.
An exo-type cellulase (Ex-1) was extracted from Irpex lacteus (Polyporus tulipiferae) and purified essentially to homogeneity. This cellulase attacked cellulosic substrates in an exo-wise fashion to produce almost exclusively cellobiose. In contrast, Ex-1 was found to attack beta-glucans having beta-(1----3)- and beta-(1----4)-mixed linkages in a way similar to an endo-type cellulase. The products formed from barley glucan by Ex-1 were 3(2)-O-beta-D-cellobiosyl-cellobiose much greater than 3(2)-O-beta-D-glucosyl-cellobiose greater than cellobiose much greater than or equal to cellotriose much greater than glucose in the early stage, but no laminaribiose was produced. An endo-type cellulase (En-1) obtained from the same fungus also hydrolyzed beta-glucans but in a typical endo-wise fashion and the products from barley glucan were 3(2)-O-beta-D-glucosyl-cellobiose much greater than 3(2)-O-beta-D-cellobiosyl-cellobiose greater than cellobiose much greater than laminaribiose; no glucose or cellotriose was produced. Thus, it seems likely that En-1 can attack any intramolecular linkage of beta-glucan, while Ex-1 requires the presence of at least cellobiosyl residues adjacent to a beta-(1----3)-D-linked glucosyl residue. This finding, together with the mode of hydrolysis of cellulosic substrates by Ex-1, suggests that the stereochemical structure of successive beta-(1----4)-cellobiosyl residues inserted by beta-(1----3)-D-glucosidic linkage is permissible in the action of Ex-1, although this enzyme prefers the beta-(1----4)-linked cellobiosyl sequence.  相似文献   

9.
The transglycosylation reaction catalyzed by neopullulanase was analyzed. Radioactive oligosaccharides were produced when the enzyme acted on maltotriose in the presence of [U-14C]glucose. Some of the radioactive oligosaccharides had only alpha-(1----4)-glucosidic linkages, but others were suggested to have alpha-(1----6)-glucosidic linkages. The existence of alpha-(1----6)-glucosidic linkages in the products from maltotriose with neopullulanase was proven by proton NMR spectroscopy and methylation analysis. We previously reported that the one active center of neopullulanase catalyzes the hydrolysis of alpha-(1----4)- and alpha-(1----6)-glucosidic linkages (Kuriki, T., Takata, H., Okada, S., and Imanaka, T. (1991) J. Bacteriol. 173,6147-6152). These facts proved that neopullulanase catalyzed all four types of reactions: hydrolysis of alpha-(1----4)-glucosidic linkage, hydrolysis of alpha-(1----6)-glucosidic linkage, transglycosylation to form alpha-(1----4)-glucosidic linkage, and transglycosylation to form alpha-(1----6)-glucosidic linkage. The four reactions are typically catalyzed by alpha-amylase, pullulanase, cyclomaltodextrin glucanotransferase, and 1,4-alpha-D-glucan branching enzyme, respectively. These four enzymes have some structural similarities to one other, but reactions catalyzed by the enzymes are considered to be distinctive: the four reactions are individually catalyzed by each of the enzymes. The experimental results obtained from the analysis of the reaction of the neopullulanase exhibited that the four reactions can be catalyzed in the same mechanism.  相似文献   

10.
Regenerating rat liver microsomes contain a beta-D-galactoside alpha-(2----3)- and a 2-acetamido-2-deoxy-beta-D-glucoside alpha-(2----6)-sialyltransferase that are involved in the synthesis of the terminal alpha-NeuAc-(2----3)-beta-D-Galp-(1----3)-alpha-[NeuAc-(2----6)]-beta- D-GlcpNAc-(1----R) group occurring in human milk oligosaccharides and the glycan chains of several N-glycoproteins. Analysis by liquid chromatography and methylation of the products of sialylation obtained when lacto-N-tetraose [beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4) -D-Glc] was used as a substrate in the incubations in vitro indicated that the disialylated sequence is formed for greater than 95% through the tetrasaccharide alpha-NeuAc-(2----3)-beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----3)-beta-D-G al- (1----4)-D-Glc as one of two possible intermediates. This indicates that in the synthesis of the disialylated sequence the alpha-(2----3)- and the alpha-(2----6)-sialyltransferase act in a highly preferred order in which the alpha-(2----3) enzyme acts first. This order is imposed by the specificity of the alpha-(2----6)-sialyltransferase, which requires an alpha-NeuAc-(2----3)-beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----R) sequence for optimal activity, and shows very low and no activity with beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----R) and beta-D-GlcNAc-(1----R) acceptor structures, respectively. Results obtained with normal rat, fetal calf, rabbit and human liver, and human placenta indicated that very similar or identical sialyltransferases occur in these tissues. It is suggested that these enzymes differ from the sialyltransferases that previously had been identified in fetal calf liver and human placenta.  相似文献   

11.
This is the first report of an immunochemical study of the combining site specificities of a set of monoclonal antibodies to dextran B512 from C57BL/6J mice. The results confirm previous observations on antidextran combining sites and reveal specificities not seen earlier extending the observed repertoire of antibody combining sites to the single alpha (1----6)-linked glucosyl antigenic determinant. Eight C57BL/6J anti-dextran B512 hybridomas, four IgM,kappa and four IgA,kappa, were produced by PEG fusion of immune spleen cells with the nonproducer myeloma cell line P3X63Ag8 6.5.3. Antibody combining site specificities were determined by quantitative precipitin assays with 14 dextrans. Native dextrans with high percentages of linear alpha (1----6)-linked glucoses, similar to the immunogen B512, were the best precipitinogens; dextrans with alternating alpha (1----3), alpha (1----6) linkages, and highly branched dextrans were less effective. All antibodies precipitated with a synthetic, unbranched alpha (1----6)-linked dextran, suggesting their combining sites were "groove-like" and directed toward internal sequences of alpha (1----6)-linked residues, rather than "cavity-like" and directed toward a nonreducing terminal glucose. Two of the IgA hybridomas gave biphasic precipitin curves with dextran B512; this was shown to be due to differences in the precipitability of IgA monomers and polymers. Differences were observed in the reactivities of several dextrans considered previously to be structurally similar, and a newly proposed structural model of dextran B1299S was assessed. Quantitative precipitin inhibition studies with alpha (1----6)-linked isomaltosyl (IM) oligosaccharides, IM2 to IM9, showed that maximum inhibition was reached with IM6 or IM7, consistent with earlier estimates of the upper limit for the sizes of anti-B512 combining sites. Two IgM hybridomas showed a unique pattern, with inhibition being obtained only with IM5 or larger IM oligosaccharides. Association constants of the antidextrans for dextran B512 and for IM7, determined by affinity gel electrophoresis, ranged from 10(2) to 10(4) ml/g, comparable to earlier findings with antidextrans and other anticarbohydrate antibodies.  相似文献   

12.
A meningococcal group B-specific horse antiserum contains at least two distinct populations of antibodies with specificities for determinants on the group B capsular polysaccharide antigen. These two populations were differentiated on the basis of the ability of only one of them to be absorbed from the antiserum by the structurally related colominic acid. The nature of the colominic acid-specific determinant was elucidated by a radioimmunoassay inhibition technique with the use of a series of linear alpha-(2----8)-linked oligomers of sialic acid as inhibitors. Colominic acid was labeled by prior removal of its N-acetyl groups, followed by their replacement with the use of [3H]acetic anhydride. The conformational nature of the determinant was proposed because of the unusually large size (10 sialic acid residues) of the oligomer required to function as an efficient inhibitor. The structure of the determinant responsible for the second population of group B-specific antibodies has not been determined, but it is obviously based on an as yet undefined conformational or structural feature peculiar to the group B meningococcal polysaccharide. In contrast to the colominic acid-specific group B determinant, the determinant responsible for the group C polysaccharide-specific rabbit antibodies proved to be more conventional. Inhibitory properties of the alpha-(2----9)-linked oligomers maximized with those containing four or five sialic acid residues, which is consistent with the approximate estimated maximal size of an antibody site.  相似文献   

13.
The conformational analysis of the recently synthesized tetrasaccharides alpha-D-Manp (1----3)-[alpha-D-Manp-(1----6)]-4-deoxy-beta-D-lyx-hexp+ ++-(1----4)-D-GlcNAc (2) and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)-D-GlcNAc (3) will be described. The preferred solution conformation of 2 and 3 is a gt-conformation, which is nearly identical with the preferred conformation of the naturally occurring tetrasaccharide alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-D-GlcNAc (1). The main structural feature is the backfolding of the alpha-(1----6)-linked D-Man to the reducing D-GlcNAc unit. Conformational analysis of the tetrasaccharides alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-1,6- anhydro-beta-D-GlcNAc (4), alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)]-4-deoxy-beta-D- lyx-hexp-(1----4)- 1,6-anhydro-beta-D-GlcNAc (5), and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)- 1,6-anhydro-beta-D-GlcNAc (6) gave additional proof for this backfolding. The substitution of the reducing unit leads to a smaller amount of gt- and a greater amount of gg-conformers. The method used for conformational analysis of 2-6 is a combination of n.m.r.-experiments and HSEA-calculations with the program GESA. Concerning the application of new 2D-techniques, the COLOC-experiment turned out to be extremely useful in sequencing oligosaccharides.  相似文献   

14.
Incubation of a membrane fraction from Mycobacterium smegmatis cells with GDP-mannose and free mannose at pH 7 in presence of Mg2+ ions resulted in the formation of a series of alpha 1----6-linked mannooligosaccharides with up to 12 mannoses. The membrane fraction also catalyzed incorporation of mannose from GDP-mannose into a lipid-soluble product with the properties of a mannosyl phospholipid. A similar product was formed by the incubation of the membrane protein with decaprenol phosphate and GDP-mannose, and it was characterized as beta-mannosylphosphoryldecaprenol. A pulse-chase experiment suggested that the mannosyl phospholipid was an intermediate in alpha 1----6-linked mannooligosaccharide synthesis, and the isolated beta-mannosylphosphoryldecaprenol was shown to function as a direct mannosyl donor on incubation with mannose, methyl alpha-D-mannoside, or alpha 1----6-linked mannooligosaccharides as acceptors. The Km values for mannose, methylmannoside, and alpha 1----6-linked mannobiose were 30-90 mM, whereas for alpha 1----6-linked mannotriose, mannotetraose, and mannopentaose the Km dropped to 2 mM. A weak enzymic activity was detected at pH 6 in the presence of both Mg2+ and Mn2+ ions that catalyzed addition of mannose in alpha 1----2 linkage to the longer alpha 1----6-mannooligosaccharides in a reaction that was specific for GDP-mannose as the donor. The membrane preparation also contained an endo-alpha 1----6-mannanase activity that degraded products longer than mannotriose by cleavage of trisaccharide units from the nonreducing end of the alpha 1----6-mannooligosaccharides.  相似文献   

15.
Two new mannose-binding lectins were isolated from garlic (Allium sativum, ASA) and ramsons (Allium ursinum, AUA) bulbs, of the family Alliaceae, by affinity chromatography on immobilized mannose. The carbohydrate-binding specificity of these two lectins was studied by quantitative precipitation and hapten-inhibition assay. ASA reacted strongly with a synthetic linear (1----3)-alpha-D-mannan and S. cerevisiae mannan, weakly with a synthetic (1----6)-alpha-D-mannan, and failed to precipitate with galactomannans from T. gropengiesseri and T. lactis-condensi, a linear mannopentaose, and murine IgM. On the other hand, AUA gave a strong reaction of precipitation with murine IgM, and good reactions with S. cerevisiae mannan and both synthetic linear mannans, suggesting that the two lectins have somewhat different binding specificities for alpha-D-mannosyl units. Of the saccharides tested as inhibitors of precipitation, those with alpha-(1----3)-linked mannosyl units were the best inhibitors of ASA, the alpha-(1----2)-, alpha-(1----4)-, and alpha-(1----6)-linked mannobioses and biosides having less than one eighth the affinity of the alpha-(1----3)-linked compounds. The N-terminal amino acid sequence of ASA exhibits 79% homology with that of AUA, and moderately high homology (53%) with that of snowdrop bulb lectin, also an alpha-D-mannosyl-binding lectin.  相似文献   

16.
The peptidoglycan-bound arabinogalactan of a virulent strain of Mycobacterium tuberculosis was per-O-methylated, partially hydrolyzed with acid, and the resulting oligosaccharides reduced and O-pentadeute-rioethylated. The per-O-alkylated oligoglycosyl alditol fragments were separated by high pressure liquid chromatography and the structures of 43 of these constituents determined by 1H NMR and gas chromatography/mass spectrometry. The arabinogalactan was shown to consist of a galactan containing alternating 5-linked beta-D-galactofuranosyl (Galf) and 6-linked beta-D-Galf residues. The arabinan chains are attached to C-5 of some of the 6-linked Galf residues. The arabinan is comprised of at least three major structural domains. One is composed of linear 5-linked alpha-D-arabinofuranosyl (Araf) residues; a second consists of branched 3,5-linked alpha-D-Araf units substituted with 5-linked alpha-D-Araf residues at both branched positions. The non-reducing terminal region of the arabinan was characterized by a 3,5-linked alpha-D-Araf residue substituted at both branched positions with the disaccharide beta-D-Araf-(1----2)-alpha-D-Araf. 13C NMR of intact soluble arabinogalactan established the presence of both alpha- and beta-Araf residues in this domain. This non-reducing terminal motif apparently provides the structural basis of the dominant immunogenicity of arabinogalactan within mycobacteria. A rhamnosyl residue occupies the reducing terminus of the galactan core and may link the arabinogalactan to the peptidoglycan. Evidence is also presented for the presence of minor structural features involving terminal mannopyranosyl units. Models for most of the heteropolysaccharide are proposed which should increase our understanding of a molecule responsible for much of the immunogenicity, pathogenicity, and peculiar physical properties of the mycobacterial cell.  相似文献   

17.
When a derivatized oligosaccharide isolated from ovalbumin and containing 6 mannose residues was incubated with yeast membranes and GDP-mannose, two sets of products were obtained, a high molecular weight one containing about 25 mannose residues and a low molecular weight one consisting of compounds with 7, 8, and 9 mannose residues, respectively. When the low molecular weight products were reincubated with the yeast membranes and GDP-mannose, no further mannose incorporation was observed, showing that these compounds must be of the wrong structure as substrates for yeast glycan processing enzymes. The structures were investigated by 1H NMR spectroscopy. The high molecular weight products contained an outer chain of an average length of 18 1----6-linked mannose residues attached to a core structure made up of the original 6 mannose residues with one additional 1----2-linked mannose added. The low molecular weight product with 8 mannose residues was deduced to contain a terminal 1----6-linked mannose (on the 1----6 arm) substituted by mannose at the 2-position, and the ones with 7 and 9 mannose residues were identified as having an additional 1----3-linked mannose on the starting Man6 substrate and on the Man8 product, respectively. The results lend further support to the picture that the processing steps must occur in proper sequence for specific products to form.  相似文献   

18.
Lacto-series glycolipids, comprising two isomeric types distinguished as type 1 or 2 based upon the linkage of the terminal galactose of the chains, form the basis for a diversity of cell surface antigens expressed on cells. Experimentally, type 2 chain precursors are generally more abundant in tissues for extractive purposes to yield rather large quantities of material compared to the type 1 chain structures. Conditions have been defined for in vitro conversion of terminal Gal beta 1----4GlcNAc linkages of type 2 chain precursors to yield type 1 lacto-series chain based terminal Gal beta 1----3GlcNAc structures in 5- to 10-mg amounts or higher. The terminal galactose of underivatized type 2 chain structures is removed by hydrolysis with jack bean beta-galactosidase followed by transfer of galactose in beta 1----3 linkage catalyzed by a beta 1----3-galactosyltransferase from human colonic adenocarcinoma Colo 205 cells which was first depleted of beta 1----4-galactosyltransferase by chromatography on alpha-lactalbumin-Sepharose. Scaled-up reaction mixtures provided a final yield of product after isolation of about 90% from the immediate Lc3Cer precursor in the 5-mg product range. The biosynthetic product was subjected to extensive chemical analysis by 1H NMR and mass spectrometric methods. These results indicated the presence of a high purity terminal Gal beta 1----3-linked product. The amount of material was sufficient for nondestructive characterization by 2-D NMR, with subsequent confirmation of structure by +FAB-MS and methylation analysis by GC-MS. The results indicate an effective means to rapidly generate lacto-series type 1 precursors in vitro as a superior alternative to direct tissue extractive procedures.  相似文献   

19.
A cell-wall preparation from the cells of Elsinoe leucospila, which produces elsinan extracellularly when grown on sucrose or glucose-potato extract medium, was fractionated systematically. The heteropolysaccharide that was released by treatment with Actinase E digestion, comprised D-mannose, D-galactose, and D-glucose (molar ratio, 1.5:1.0:0.1). Methylation, mild acid hydrolysis, and 13C-NMR studies suggested that the polysaccharide contains a backbone of alpha-(1----6)-linked D-mannose residues having two kinds of side chains, one attached at the O-4 with single or short beta-(1----6)-linked D-galactofuranosyl residues, and the other attached at O-2 with short side chains, most probably, of alpha-(1----3)-linked D-mannopyranosyl residues. A moderately branched D-glucan fraction, obtained from the cold alkali extract, was fractionated to give an antitumor-active purified beta-(1----3)-glucan having branches of single beta-D-glucosyl groups, one out of eight D-glucose residues being substituted at the O-6.  相似文献   

20.
The disaccharides, O-(sodium 3-deoxy-alpha- and -beta-D-manno-2-octulopyranosylonate)-(2----8)-sodium (allyl 3-deoxy-alpha-D-manno-2-octulopyranosid)onate, were prepared via glycosylation of methyl (allyl 4,5,7-tri-O-acetyl-3-deoxy-alpha-D-manno-2-octulopyranosid)onat e with methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-D-manno-2-octulopyranosyl bromide)onate under Helferich and Koenigs-Knorr conditions, respectively. Based on g.l.c.-m.s. data of the alpha- and beta-(2----8)-linked disaccharide derivatives, obtained after carbonyl- and carboxyl-group reduction, followed by methylation, the alpha-anomeric configuration was assigned to the terminal KDO-residue in the KDO-region of Chlamydial lipopolysaccharide. The trisaccharide O-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-(2----8)-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-(2----4)-sodium (allyl 3-deoxy-alpha-D-manno-2-octulopyranosid)onate was obtained via block synthesis using an alpha-(2----8)-linked disaccharide bromide derivative as the glycosyl donor. Copolymerization of the allyl glycosides with acrylamide gave water-soluble macromolecular antigens, suitable for defining epitope specificities of monoclonal antibodies directed against Chlamydial LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号