首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5‐HT3 receptor is a member of the ‘Cys‐loop’ family of ligand‐gated ion channels that mediate fast excitatory and inhibitory transmission in the nervous system. Current evidence points towards native 5‐HT3 receptors originating from homomeric assemblies of 5‐HT3A or heteromeric assembly of 5‐HT3A and 5‐HT3B. Novel genes encoding 5‐HT3C, 5‐HT3D, and 5‐HT3E have recently been described but the functional importance of these proteins is unknown. In the present study, in silico analysis (confirmed by partial cloning) indicated that 5‐HT3C, 5‐HT3D, and 5‐HT3E are not human–specific as previously reported: they are conserved in multiple mammalian species but are absent in rodents. Expression profiles of the novel human genes indicated high levels in the gastrointestinal tract but also in the brain, Dorsal Root Ganglion (DRG) and other tissues. Following the demonstration that these subunits are expressed at the cell membrane, the functional properties of the recombinant human subunits were investigated using patch clamp electrophysiology. 5‐HT3C, 5‐HT3D, and 5‐HT3E were all non‐functional when expressed alone. Co‐transfection studies to determine potential novel heteromeric receptor interactions with 5‐HT3A demonstrated that the expression or function of the receptor was modified by 5‐HT3C and 5‐HT3E, but not 5‐HT3D. The lack of distinct effects on current rectification, kinetics or pharmacology of 5‐HT3A receptors does not however provide unequivocal evidence to support a direct contribution of 5‐HT3C or 5‐HT3E to the lining of the ion channel pore of novel heteromeric receptors. The functional and pharmacological contributions of these novel subunits to human biology and diseases such as irritable bowel syndrome for which 5‐HT3 receptor antagonists have major clinical usage, therefore remains to be fully determined.  相似文献   

2.
Abstract: We examined the effect of kindling on serotonergic neurotransmission in the hippocampus by measuring serotonin (5-HT) release and uptake in hippocampal synaptosomes and 5-HT1A and 5-HT4 receptor subtypes during and at different times after electrical kindling of the dentate gyrus. Using quantitative receptor autoradiography, we found that binding of 8-[3H]hydroxy-2-(di- n -propylamino)tetralin ([3H]8-OH-DPAT) to 5-HT1A receptors was selectively increased by 20% on average ( p < 0.05) in the dentate gyrus of the stimulated and contralateral hippocampus 2 days after stage 2 (stereotypes and occasional retraction of a forelimb) and by 100% on average ( p < 0.05) 1 week after stage 5 (tonic-clonic seizures) compared with sham-stimulated rats. A 20% increase ( p < 0.05) was observed 1 month after the last generalized seizure. No changes were found after a single afterdischarge. 5-HT4 receptors, which colocalize with 5-HT1A receptors on hippocampal neurons, were not modified in kindled tissue. [3H]5-HT uptake and its release as well as the 5-HT1B autoreceptor function did not differ from shams in hippocampal synaptosomes at stages 2 and 5. Systemic administration of 100 and 1,000 µg kg−1 8-OH-DPAT or 1,000 µg kg−1 WAY-100,635, 30 min before each electrical stimulation, did not significantly alter kindling progression or the occurrence of stage 5 seizures in fully kindled rats. The changes in 5-HT1A receptor density in the dentate gyrus are part of the plastic modifications occurring during kindling and may contribute to modulating tissue hyperexcitability.  相似文献   

3.
Abstract: Using a combination of library screening and nested PCR based on a partial human serotonin 5-HT4 receptor sequence, we have cloned the complete coding region for a human 5-HT4 receptor. The sequence shows extensive similarity to the published porcine 5-HT4A and rat 5-HT4L receptor cDNA; however, in comparison with the latter, we find an open reading frame corresponding to only 388 amino acids instead of 406 amino acids. This difference is due to a frame shift caused by an additional cytosine found in the human sequence after position 1,154. Moreover, we also found the same additional cytosine in the rat 5-HT4 sequence. We confirmed the occurrence of the sequence by examining this part of the sequence in genomic DNA of 10 human volunteers and in rat genomic DNA. Based on a part of the genomic 5-HT4 receptor sequence that was identified in the cloning process, there seem to be at least two possible splice sites in the coding region of the gene. The human 5-HT4 receptor, transiently expressed in COS-7 cells, showed radioligand binding properties similar to 5-HT4 receptors in guinea pig striatal tissue. [3H]GR 113808 revealed K D values of 0.15 ± 0.01 n M for the human receptor and 0.3 ± 0.1 n M in the guinea pig tissue. Binding constants were determined for four investigated 5-HT4 antagonists and three agonists, and appropriate binding inhibition constants were found in each case. Stimulation of transfected COS-7 cells with 5-HT4-specific agonists caused an increase in cyclic AMP levels.  相似文献   

4.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

5.
Abstract: Serotonin (5-HT) applied at 1, 3, and 10 µ M into the striatum of halothane-anesthetized rats by in vivo microdialysis enhanced dopamine (DA) outflow up to 173, 283, and 584% of baseline values, respectively. The 5-HT effect was partially reduced by 1 or 10 µ M GR 125,487, a 5-HT4 antagonist, and by 100 µ M DAU 6285, a 5-HT3/4 antagonist, whereas the 5-HT1/2/6 antagonist methiothepin (50 µ M ) was ineffective. In the presence of tetrodotoxin the effect of 1 µ M 5-HT was not affected by 5-HT4 antagonists. In addition, tetrodotoxin abolished the increase in DA release induced by the 5-HT4 agonist ( S )-zacopride (100 µ M ). In striatal synaptosomes, 1 and 10 µ M 5-HT increased the outflow of newly synthesized [3H]DA up to 163 and 635% of control values, respectively. The 5-HT4 agonists BIMU 8 and ( S )-zacopride (1 and 10 µ M ) failed to modify [3H]DA outflow, whereas 5-methoxytryptamine (5-MeOT) at 10 µ M increased it (62%). In prelabeled [3H]DA synaptosomes, 1 µ M 5-HT, but not ( S )-zacopride (1 and 10 µ M ), increased [3H]DA outflow. DAU 6285 (10 µ M ) failed to modify the enhancement of newly synthesized [3H]DA outflow induced by 5-MeOT or 5-HT (1 µ M ), whereas the effect of 5-HT was reduced to the same extent by the DA reuptake inhibitor nomifensine (1 µ M ) alone or in the presence of DAU 6285. These results show that striatal 5-HT4 receptors are involved in the 5-HT-induced enhancement of striatal DA release in vivo and that they are not located on striatal DA terminals.  相似文献   

6.
Although the subtypes of serotonin 5-HT1 receptors have distinct structure and pharmacology, it has not been clear if they also exhibit differences in coupling to cellular signals. We have sought to compare directly the coupling of 5-HT1A and 5-HT1B receptors to adenylyl cyclase and to the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase-2). We found that 5-HT1B receptors couple better to activation of ERK2 and inhibition of adenylyl cyclase than do 5-HT1A receptors. 5-HT stimulated a maximal fourfold increase in ERK2 activity in nontransfected cells that express endogenous 5-HT1B receptors at a very low density and a maximal 13-fold increase in transfected cells expressing 230 fmol of 5-HT1B receptor/mg of membrane protein. In contrast, activation of 5-HT1A receptors stimulated only a 2.8-fold maximal activation of ERK2 in transfected cells expressing receptors at 300 fmol/mg of membrane protein but did stimulate a 12-fold increase in activity in cells expressing receptors at 3,000 fmol/mg of membrane protein. Similarly, 5-HT1A, but not 5-HT1B, receptors were found to cause significant inhibition of forskolin-stimulated cyclic AMP accumulation only when expressed at high densities. These findings demonstrate that although both 5-HT1A and 5-HT1B receptors have been shown to couple to G proteins of the Gi class, they exhibit differences in coupling to ERK2 and adenylyl cyclase.  相似文献   

7.
Abstract: Efficacies of the 5-hydroxytryptamine (serotonin) 5-HT3 receptor (5-HT3R) agonists 2-methyl-5-HT, dopamine, and m -chlorophenylbiguanide on 5-HT3R native to N1E-115 cells and on homopentameric 5-HT3R expressed in Xenopus oocytes were determined relative to that of 5-HT. Efficacies of 2-methyl-5-HT and dopamine on 5-HT3R native to differentiated N1E-115 cells are high (54 and 36%) as compared with their efficacies on homopentameric 5-HT3R-AL and 5-HT3R-As receptors expressed in oocytes (4–8%). m -Chlorophenylbiguanide does not distinguish between 5-HT3R in N1E-115 cells and in oocytes. The distinct pharmacological profile of 5-HT3R native to differentiated N1E-115 cells is conserved when poly(A)+ mRNA from these cells is expressed in oocytes. The results indicate that, apart from the known 5-HT3R subunits, N1E-115 cells express additional proteins involved in 5-HT3R function.  相似文献   

8.
Abstract: Specific binding of [3H]granisetron was examined to serotonin 5-HT3 receptors in synaptosomal membranes of rat cerebral cortex between 1 and 37°C. Displacing potencies were determined for 5-HT3 antagonists (granisetron, ondansetron, tropisetron, and d -tubocurarine) and agonists (5-hydroxytryptamine, 2-methyl-5-hydroxytryptamine, phenylbiguanide, m -chlorophenylbiguanide, and SR 57227A). Displacing potencies of the agonists decreased with decreasing temperature. In contrast, displacing potencies of all antagonists increased with decreasing temperature, whereas those of tropisetron and d -tubocurarine passed a maximum. Scatchard analysis of [3H]granisetron binding resulted in K D values lower than the IC50 values of granisetron and a decreasing number of binding sites at higher temperatures. It can be reconciled with temperature-dependent agonist and antagonist states of 5-HT3 receptors. A semiquantitative thermodynamic analysis was based on displacing potencies. The distinct patterns for the signs of entropy, enthalpy, and heat capacity changes on binding can be reconciled with ionic interactions for agonists and hydrophobic interactions for antagonists. The distinctive differences in these thermodynamic parameters exceed those for GABAA and glycine receptor-ionophore complexes.  相似文献   

9.
Abstract: We describe the cloning and characterization of a human 5-HT6 serotonin receptor. The open reading frame is interrupted by two introns in positions corresponding to the third cytoplasmic loop and the third extracellular loop. The human 5-HT6 cDNA encodes a 440-amino-acid polypeptide whose sequence diverges significantly from that published for the rat 5-HT6 receptor. Resequencing of the rat cDNA revealed a sequencing error producing a frame shift within the open reading frame. The human 5-HT6 amino acid sequence is 89% similar to the corrected rat sequence. The recombinant human 5-HT6 receptor is positively coupled to adenylyl cyclase and has pharmacological properties similar to the rat receptor with high affinity for several typical and atypical antipsychotics, including clozapine. The receptor is expressed in several human brain regions, most prominently in the caudate nucleus. The gene for the receptor maps to the human chromosome region 1p35–p36. This localization overlaps that established for the serotonin 5-HT1Dα receptor, suggesting that these may be closely linked. Comparison of genomic and cDNA clones for the human 5-HT6 receptor also reveals an Rsa I restriction fragment length polymorphism within the coding region.  相似文献   

10.
Drug interactions with 5-HT1 (5-hydroxytryptamine type 1) binding site subtypes were analyzed in rat frontal cortex. 8-Hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) displays high affinity (Ki 3.3 +/- 1 nM) for 29 +/- 3% of total [3H]5-HT binding in rat frontal cortex and low affinity (Ki 9,300 +/- 1,000) for 71 +/- 4% of the remaining 5-HT1 sites. Therefore, non-5-HT1A binding in rat frontal cortex was defined as specific [3H]5-HT binding observed in the presence of 100 nM 8-OH-DPAT. 5-Methoxy 3-(1,2,3,6-tetrahydro-4-pyridinyl) 1 H indole (RU 24969), 1-(m-trifluoromethylphenyl)piperazine (TFMPP), mianserin, and methysergide produce shallow competition curves of [3H]5-HT binding from non-5-HT1A sites. Addition of 10(-3) M GTP does not increase the apparent Hill slopes of these competition curves. Computer-assisted iterative curve fitting suggests that these drugs can discriminate two distinct subpopulations of non-5-HT1A binding sites, each representing approximately 35% of the total [3H]5-HT binding in the rat frontal cortex. All three 5-HT1 binding site subtypes display nanomolar affinity for 5-HT and 5-methoxytryptamine. A homogeneous population of 5-HT1A sites can be directly labeled using [3H]8-OH-DPAT. These sites display nanomolar affinity for 8-OH-DPAT, WB 4101, RU 24969, 2-(4-[4-(2-pyrimidinyl)-1-piperazinyl] butyl)-1,2-benzisothiazol-3-(2H)one-1, 1-dioxidehydrochloride (TVX Q 7821), 5-methoxydimethyltryptamine, and d-lysergic acid diethylamide. The potencies of RU 24969, TFMPP, and quipazine for [3H]5-HT binding are increased by addition of 100 nM 8-OH-DPAT and 3,000 nM mianserin to the [3H]5-HT binding assay. Moreover, the drugs have apparent Hill slopes near 1 under these conditions. This subpopulation of total [3H]5-HT binding is designated 5-HT1B. By contrast, methysergide and mianserin become more potent inhibitors of residual [3H]5-HT binding to non-5-HT1A sites in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969. The drug competition curves under these conditions have apparent Hill slopes of near unity and these sites are designated 5-HT1C. Drug competition studies using a series of 24 agents reveals that each 5-HT1 subtype site has a unique pharmacological profile. These results suggest that radioligand studies can be used to differentiate three distinct subpopulations of 5-HT1 binding sites labeled by [3H]5-HT in rat frontal cortex.  相似文献   

11.
In the presence of 1 microM ( +/- )-pindolol [to block 5-hydroxytryptamine (5-HT, serotonin) 5-HT 1A and 5-HT 1B receptors] and 100 nM mesulergine (to block 5-HT 1C receptors), 2.0 nM [3H]5-HT binding to rat cortical homogenates is specific, saturable, and reversible. Scatchard analysis of [3H]5-HT binding, in the presence of 1 microM ( +/- )-pindolol and 100 nM mesulergine, produced a KD of 3.2 nM and Bmax of 43 fmol/mg protein. Distribution studies show this site to be present in most rat brain regions. This site is also detectable in human caudate. The pharmacological profile of this site is distinct from the previously identified 5-HT receptor subtypes. Compounds with high affinity for 5-HT 1A (8-hydroxydipropylaminotetralin), 5-HT 1B (trifluoromethylphenylpiperazine), 5-HT 1C (mesulergine), 5-HT 2 (4-bromo-2,5-dimethoxyphenylisopropylamine), and 5-HT3 (ICS 205-930) receptors have low affinity for this site. These data suggest the presence of an additional, previously unidentified, 5-HT binding site in rat and human brain tissue. This putative novel 5-HT receptor has a similar pharmacology to the "5-HT 1D" site detected in bovine brain by Heuring and Peroutka.  相似文献   

12.
Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

13.
Abstract: We have examined the ligand binding site of the serotonin 5-HT6 receptor using site-directed mutagenesis. Replacing the highly conserved Asp106 in transmembrane region III by asparagine eliminated d -[3H]lysergic acid diethylamide ([3H]LSD) binding to the mutant receptor transiently expressed in HEK293 cells. The potency of 5-HT and LSD to stimulate adenylyl cyclase was reduced by 3,600- and 500-fold, respectively, suggesting that an ionic interaction between the positively charged amino group of 5-HT and D106 is essential for high-affinity binding and important for receptor activation. In addition, basal cyclic AMP levels in cells expressing this mutant were increased. Mutation of a tryptophan residue one helix turn toward the extracellular side of transmembrane region III (Trp102) to phenylalanine produced significant changes in the binding affinity and potency of several ligands, consistent with a role of this residue in the formation of the ligand binding site. The exchange of two neighboring residues in the carboxy-terminal half of transmembrane region VI (Ala287 and Asn288) for leucine and serine resulted in a mutant receptor with increased affinities (seven- to 30-fold) for sumatriptan and several ergopeptine ligands. The identification of these interactions will help to improve models of the 5-HT6 receptor ligand binding site.  相似文献   

14.
Abstract: 5-Hydroxytryptamine elicits its physiological effects by interacting with a diverse group of receptors. Two of these receptors, the 5-HT1Dβ and the 5-HT1E receptors, are ∼60% identical in the transmembrane domains that presumably form the ligand binding site yet have very different pharmacological properties. Analysis of the pharmacological properties of a series of chimeric 5-HT1Dβ/5-HT1E receptors indicates that sequences in the sixth and seventh transmembrane domains are responsible for the differential affinity of 5-carboxamidotryptamine for these two receptors. More detailed analysis shows that two amino acid differences in the sixth transmembrane domain (Ile333 and Ser334 in the 5-HT1Dβ receptor, corresponding to Lys310 and Glu311 in the 5-HT1E receptor) are largely responsible for the differential affinities of some, but not all, ligands for the 5-HT1Dβ and 5-HT1E receptors. It is likely that these two amino acids subtly determine the overall three-dimensional structure of the receptor rather than interact directly with individual ligands.  相似文献   

15.
Abstract: The serotonin 5-HT1A and 5-HT1B receptors are two structurally related but pharmacologically distinguishable 5-HT receptor types. In brain, the 5-HT1A receptor is localized on the soma and dendrites of neurons, whereas the 5-HT1B receptor is targeted to the axon terminals. We previously showed that these two receptors are targeted in different membrane compartments when stably expressed in the epithelial LLC-PK1 cell line. Further investigations on the mechanisms responsible for their differential targeting were done by constructing chimeras of 5-HT1A and 5-HT1B receptors still able to bind specifically [3H]lysergic acid diethylamide and selective agonists and antagonists. Their cellular localization examined by confocal microscopy suggests that the third intracellular domain of the 5-HT1B receptor was responsible for its Golgi-like localization in transfected LLC-PK1 cells. In contrast, the third intracellular domain of the 5-HT1A receptor apparently allowed the sorting of the chimeras to the plasma membrane. Further inclusion of the C-terminal domain of the 5-HT1A receptor in their sequence led to a basolateral localization, whereas that of the 5-HT1B receptor allowed an apical targeting, suggesting the existence of a targeting signal in this portion of the receptor(s).  相似文献   

16.
Radioligand binding studies were performed to characterize serotonin 5-HT1D receptors in postmortem human prefrontal cortex and caudate homogenates. [3H]5-HT binding, in the presence of pindolol (to block 5-HT1A and 5-HT1B receptors) and mesulergine (to block 5-HT1C receptors), was specific, saturable, reversible, and of high affinity. Scatchard analyses of [3H]5-HT-labeled 5-HT1D sites in human prefrontal cortex produced a KD value of 4.2 nM and Bmax of 126 fmol/mg protein. In competition experiments, 8-hydroxydipropylaminotetralin, trifluoromethylphenylpiperazine, mesulergine, 4-bromo-2,5-dimethoxyphenylisopropylamine, and ICS 205-930 had low affinity for [3H]5-HT-labeled 5-HT1D sites, indicating that the pharmacology of the 5-HT1D site is distinct from that of previously identified 5-HT1A, 5-HT1B, 5-HT1C, 5-HT2, and 5-HT3 sites. 5-HT1D sites in human brain have a similar pharmacology to the 5-HT1D sites previously identified in rat, porcine and bovine brains. Guanyl nucleotides, guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and guanosine 5'-(beta, gamma-imido)-triphosphate (Gpp(NH)p), modulated the binding of [3H]5-HT to 5-HT1D sites, whereas adenyl nucleotides had no effect. These findings are supportive of the presence of serotonin 5-HT1D receptors in human prefrontal cortex and caudate which appear to be coupled to a GTP binding protein.  相似文献   

17.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

18.
[3H]Serotonin (5-hydroxytryptamine, [3H]5-HT) was used as a radioligand probe of brain 5-HT receptors in homogenates of human cortical tissue. Two binding sites were detected in the presence of 1 microM pindolol (to block 5-HT1A and 5-HT1B receptors), and 100 nM mesulergine (to block 5-HT1C and 5-HT2 receptors). One of these sites demonstrated high affinity for 5-carboxyamidotryptamine (5-CT) and ergotamine, consistent with the known pharmacology of the 5-HT1D receptor; the second site demonstrated low affinity for 5-CT and ergotamine. Computer-assisted analyses indicated that both drugs displayed high affinities (Ki values of 1.1 nM and 0.3 nM for 5-CT and ergotamine, respectively) for 55% of the sites and low affinities (Ki values of 910 nM and 155 nM for 5-CT and ergotamine, respectively) for 45% of the sites. To investigate the non-5-HT1D component of the binding, 100 nM 5-CT (to block 5-HT1A, 5-HT1B, and 5-HT1D receptors) was coincubated with [3H]5-HT, membranes, and mesulergine. The remaining [3H]5-HT binding (hereafter referred to as "5-HT1E") displayed high affinity and saturability (KD, 5.3 nM; Bmax, 83 fmol/mg) in human cortical tissue. Competition studies with nonradioactive drugs indicated that, of the drugs tested, 5-CT and ergotamine displayed the highest selectivity for the 5-HT1D site versus the 5-HT1E site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Abstract: G protein activation mediated by serotonin 5-HT1A and 5-HT1B/D receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPγS binding to brain sections. [35S]GTPγS binding was stimulated by the mixed 5-HT1A/5-HT1B/D agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 ± 14%), dorsal raphe (+70 ± 8%), lateral septum (+52 ± 12%), cingulate (+36 ± 8%), and entorhinal cortex (+34 ± 5%). L694247 caused little or no stimulation of [35S]GTPγS binding in brain regions with high densities of 5-HT1B/D binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPγS binding response was antagonized by WAY100635 (10 µM) and methiothepin (10 µM). In contrast, the 5-HT1B inverse agonist SB224289 (10 µM) did not affect the L694247-mediated [35S]GTPγS binding response, and the mixed 5-HT1B/D antagonist GR127935 (10 µM) yielded a partial blockade. The distribution pattern of the [35S]GTPγS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPγS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 µM) stimulated [35S]GTPγS binding in the hippocampus by 20–50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPγS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT1B/D receptors can be measured in guinea pig brain sections.  相似文献   

20.
Abstract: In the current study we examined the effects of coadministration of a serotonin 5-HT1A antagonist, (±)-1-(1 H -indol-4-yloxy)-3-(cyclohexylamino)-2-propanol maleate (LY 206130), and a dual 5-HT and norepinephrine (NE) uptake inhibitor, duloxetine, on extracellular levels of NE, 5-HT, dopamine (DA), 5-hydroxyindoleacetic acid, and 3,4-dihydroxyphenylacetic acid in rat hypothalamus microdialysates. LY 206130 (3.0 mg/kg, s.c.) alone significantly increased NE and DA levels by 60 and 34%, respectively, without affecting 5-HT levels. Duloxetine administration at 4.0 mg/kg, i.p. alone produced no significant changes in levels of 5-HT, NE, or DA. In contrast, when LY 206130 and duloxetine were coadministered at 3.0 mg/kg, s.c. and 4.0 mg/kg, i.p., respectively, 5-HT, NE, and DA levels increased to 5.7-, 4.8-, and threefold over their respective basal levels. These data demonstrate that antagonism of somatodendritic 5-HT1A autoreceptors and concomitant inhibition of 5-HT and NE uptake with duloxetine may promote synergistic increases in levels of extracellular 5-HT, NE, and DA in hypothalamus of conscious, freely moving rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号