首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils disappeared completely after treatment with a solution containing CDTA, a strong divalent cation chelator, at a low ionic strength. A gel electrophoretic study revealed that all troponin C and about half of myosin light chain 2 were removed from the myofibrils by the CDTA treatment. The CDTA-treated myofibrils, when reconstituted with skeletal troponin C, showed almost exactly the same Ca2+- or Sr2+-sensitive ATPase activity as that of intact myofibrils. The CDTA-treated myofibrils reconstituted with porcine cardiac troponin C showed the same Ca2+- or Sr2+-sensitivity of the ATPase as that of porcine cardiac myofibrils; Sr2+-sensitivity relative to Ca2+-sensitivity was about ten times higher than, and the maximal slope of the activation curve was about half that of skeletal myofibrils. These findings indicate that these characteristic features of divalent cation regulation in the contraction of skeletal and cardiac muscles are determined solely by the species of troponin C. Bovine brain calmodulin hardly activated the ATPase activity of the CDTA-treated myofibrils even in the presence of Ca2+. Excess calmodulin, however, was found to give Ca2+- or Sr2+-sensitivity to the ATPase activity of the CDTA-treated myofibrils. Frog skeletal parvalbumins 1 and 2, even in excess, did not affect the ATPase activity of the CDTA-treated myofibrils.  相似文献   

2.
Partial extraction of troponin C (TnC) decreases the Ca2+ sensitivity of tension development in mammalian skinned muscle fibers (Moss, R. L., G. G. Giulian, and M. L. Greaser. 1985. Journal of General Physiology. 86:585), which suggests that Ca2+-activated tension development involves molecular cooperativity within the thin filament. This idea has been investigated further in the present study, in which Ca2+-insensitive activation of skinned fibers from rabbit psoas muscles was achieved by removing a small proportion of total troponin (Tn) complexes. Ca2+-activated isometric tension was measured at pCa values (i.e., -log[Ca2+]) between 6.7 and 4.5: (a) in control fiber segments, (b) in the same fibers after partial removal of Tn, and (c) after recombination of Tn. Tn removal was accomplished using contaminant protease activity found in preparations of LC2 from rabbit soleus muscle, and was quantitated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning densitometry. Partial Tn removal resulted in the development of a Ca2+-insensitive active tension, which varied in amount depending on the duration of the extraction, and concomitant decreases in maximal Ca2+-activated tensions. In addition, the tension-pCa relation was shifted to higher pCa values by as much as 0.3 pCa unit after Tn extraction. Readdition of Tn to the fiber segments resulted in the reduction of tension in the relaxing solution to control values and in the return of the tension-pCa relation to its original position. Thus, continuous Ca2+-insensitive activation of randomly spaced functional groups increased the Ca2+ sensitivity of tension development in the remaining functional groups along the thin filament. In addition, the variation in Ca2+-insensitive active tension as a function of Tn content after extraction suggests that only one-third to one-half of the functional groups within a thin filament need to be activated for complete disinhibition of that filament to be achieved.  相似文献   

3.
The effect of troponin T treatment on the Ca(2+)-activated tension of single glycerinated rabbit skeletal muscle fibers was examined. The tension of the fiber was completely desensitized to Ca2+ by incubation in a solution containing an excessive amount of troponin T and reached a level of about 70% of the maximum tension of the control fiber. SDS/PAGE showed that most of troponins C and I was removed from the fiber by troponin T treatment. During the course of troponin T treatment, the cooperativity of Ca2+ activation (Hill coefficient) was decreased while pCa at half-maximal Ca(2+)-sensitive tension (pK) increased. Using the 26-K fragment of troponin T, the study indicated that the removal of troponins C and I was due to the replacement of the troponin C.I.T complex in the myofibrils of the fiber with the added troponin T. The troponin-T-treated fiber was again sensitized to Ca2+ by the addition of troponin C.I. The removal of troponin C by treatment with trans-1,2-cyclohexanediamine-N,N,N',N'-tetraacetic acid did not change the minimum tension of the fiber, from which troponin C.I was partially removed by troponin T treatment, but it decreased the height of maximum tension with a concomitant decrease in the Hill coefficient as well as a decrease in pK. The above findings suggested that pK is determined by the balance between two opposite actions through troponins C and I, while the extent of cooperativity of Ca2+ activation seemed to be related mainly to the content of troponin C.  相似文献   

4.
Troponin C was isolated from the skeletal muscle of bullfrog (Rana catesbeiana), and its relative molecular mass was estimated to be 18,000 by SDS/polyacrylamide gel electrophoresis. In its amino acid composition, bullfrog troponin C was similar to that of the frog (Rana esculenta) but different from that of rabbit. Its ultraviolet spectrum was consistent with its amino acid composition. The ultraviolet difference spectrum of the Ca(2+)-loaded form vs. the metal-free form indicated that the single Tyr residue and some Phe residues in the bullfrog troponin C molecule were affected by the conformational change associated with Ca2+ binding. On electrophoresis in polyacrylamide gel in 14 mM Tris and 90 mM glycine, the metal-free and Mg(2+)-loaded forms migrated slower than the Ca(2+)-loaded form. The property is shared by rabbit troponin C but not parvalbumins or calmodulin. The ATPase activity of CDTA-treated myofibrils reconstituted with bullfrog troponin C showed the same Ca(2+)- and Sr(2+)-sensitivity as that of those reconstituted with rabbit troponin C. Bullfrog troponin C is, thus, physiologically the same as rabbit troponin C, in spite of several marked differences in their physicochemical properties.  相似文献   

5.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

6.
Extraction of troponin C (TnC) from skinned muscle fibers reduces maximum Ca2+ and rigor cross-bridge (RXB)-activated tensions and reduces cooperativity between neighboring regulatory units (one troponin-tropomyosin complex and the seven associated actins) of thin filaments. This suggests that TnC has a determining role in RXB, as well as in Ca(2+)-dependent activation processes. To investigate this possibility further, we replaced fast TnC (fTnC) of rabbit psoas fibers with either CaM[3,4TnC] or cardiac TnC (cTnC) and compared the effects of these substitutions on Ca2+ and RXB activation of tension. CaM[3,4TnC] substitution has the same effect on Ca(2+)- and RXB-activated tensions; they are reduced 50%, and cooperativity between regulatory units is reduced 40%. cTnC substitution also reduces the maximum Ca(2+)-activated tension and cooperativity. But with RXB activation the effects on tension and cooperativity are opposite; cTnC substitution potentiates tension but reduces cooperativity. We considered whether tension potentiation could be explained by increased activation by cycling cross-bridges (CXBs), but the concerted transition formalism predicts fibers will fail to relax in high substrate and high pCa when CXBs are activator ligands. It predicts resting tension, which is not observed in either control or cTnC-substituted fibers. Rather, it appears that cTnC facilitates RXB activation of fast fibers more effectively than fTnC. The order of RXB-activated tension facilitation is cTnC > fTnC > CaM[3,4TnC] > empty TnC-binding sites. Comparison of the structures of fTnC, CaM[3,4TnC], and cTnC indicates that the critical region for this property lies in the central helix or N-terminal domain, including EF hand motifs 1 and 2.  相似文献   

7.
Vanadate (0.1 mM) reduces tension of glycerinated rabbit psoas muscle fibers, shifts tension--pCa curve to lower pCa, increases the rate constant of delayed tension development and changes dependence of this rate constant on the level of Ca2+-activation. Vanadate influence stops the increase of the rate constant with the rise of Ca++-activated tension. Since actin-myosin-ADP complex is dissociated by vanadate, the muscle performance at low activation levels is supposed to be conditioned largely by the cross-bridges interacting with actin of the actin blocks switched on by myosin-ADP. Kinetics of such cross-bridges differs from that of the cross bridges interacting with actin activated by Ca++ binding to troponin C.  相似文献   

8.
Troponin C was removed almost completely from the porcine cardiac myofibrils by the same extraction procedure using CDTA as that previously reported for the rabbit skeletal myofibrils (Morimoto, S. & Ohtsuki, I. (1987) J. Biochem. 101, 291-301), and the effects of substitution of troponin C in cardiac myofibrils with rabbit skeletal troponin C or bovine brain calmodulin were examined. While the ATPase activity of intact cardiac myofibrils or cardiac troponin C-reconstituted cardiac myofibrils was activated at only a little higher concentration of Sr2+ than Ca2+, the skeletal troponin C-substituted cardiac myofibrils, as well as intact rabbit skeletal myofibrils, required more than 10 times higher concentration of Sr2+ than Ca2+ for activation of the myofibrillar ATPase activity. However, the concentrations of Ca2+ and Sr2+ required for the activation of the ATPase activity of the skeletal troponin C-substituted cardiac myofibrils were both about 5 times higher than those of intact skeletal myofibrils. The skeletal troponin C-substituted cardiac myofibrils, as well as intact skeletal myofibrils, also showed higher cooperativity in the Ca2+-activation of the ATPase activity than intact or cardiac troponin C-reconstituted cardiac myofibrils. The ATPase activity of calmodulin-substituted cardiac myofibrils was activated at a several times lower concentration of Ca2+ or Sr2+ than that of calmodulin-substituted skeletal myofibrils, while the ratios of the concentration of Sr2+ to Ca2+ required for activation were almost the same in both cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We find that extraction of as little as one troponin C molecule per troponin-tropomyosin strand on a thin filament reduces the slope of the pCa/tension relation. We interpret this to mean that the regulatory units along a thin filament of rabbit psoas fibers are linked co-operatively so that a thin filament activates as a unit. The presence of extended co-operativity explains why the pCa/tension relation in skinned fibers has a slope much higher than predicted by binding of Ca2+ to one regulatory unit. Replacement of the extracted troponin C with purified troponin C fully reverses the effect of extraction and shows it to be the essential Ca2+ binding protein responsible for the steep slope of the pCa/tension relation.  相似文献   

10.
Glycerinated rabbit fast skeletal muscle fibers were chemically skinned with 1% Brij 35 and partially depleted of endogenous troponin C subunit (TnC) by exposure of the fibers to EDTA (Zot, H. G., and Potter, J. D. (1982) J. Biol. Chem. 257, 7678-7683). The TnC-depleted fibers exhibited a decrease in maximal tension that was mostly restored by readdition of TnC or by the addition of the fluorescent 5-dimethylaminonaphthalene-1-sulfonyl aziridine analogue, TnCDanz. TnCDanz is known to undergo an increase in fluorescence intensity when Ca2+ binds to the two low affinity Ca2+-specific regulatory sites of TnC. Steady-state fractional fluorescence and tension changes were measured simultaneously as a function of Ca2+. The Ca2+ sensitivity of the fluorescence curve was about 0.6 log unit greater than the tension curve. This difference in sensitivity could be explained if separate conformational states of TnC, brought about by Ca2+ binding to the Ca2+-specific sites, produce the fluorescence and tension changes. TnC-depleted fibers were also reconstituted with the fluorescent 2-[(4'-iodoacetamido)analino]naphthalene-6-sulfonic acid analogue, cardiac TnCIaans, which undergoes an increase in fluorescence intensity when Ca2+ binds to the single Ca2+- specific regulatory site. The steady-state fractional fluorescence and tension curves for fibers reconstituted with cardiac TnCIaans had nearly the same Ca2+ sensitivity. The steady-state fractional fluorescence of myofibrils reconstituted with TnCDanz was found to have a greater sensitivity to Ca2+ than the simultaneously measured ATPase. In all cases paired fractional fluorescence and activity curves tended to have parallel dependence on Ca2+. These procedures make it possible to study the Ca2+ binding properties of the Ca2+- specific sites in intact myofibrils and skinned fibers; the results presented suggest that the Ca2+ affinity of the Ca2+-specific sites of troponin are reduced in the thin filament compared to that of troponin in solution.  相似文献   

11.
The control of myocardial contraction with skeletal fast muscle troponin C   总被引:8,自引:0,他引:8  
The present study describes experiments on the myocardial trabeculae from the right ventricle of Syrian hamsters whose troponin C (TnC) moiety was exchanged with heterologous TnC from fast skeletal muscle of the rabbit. These experiments were designed to help define the role of the various classes of Ca2+-binding sites on TnC in setting the characteristic sensitivities for activations of cardiac and skeletal muscles. Thin trabeculae were skinned and about 75% of their troponin C extracted by chemical treatment. Tension development on activations by Ca2+ and Sr2+ was found to be nearly fully blocked in such TnC extracted preparations. Troponin C contents and the ability to develop tension on activations by Ca2+ and Sr2+ was permanently restored after incubation with 2-6 mg/ml purified TnC from either rabbit fast-twitch skeletal muscle (STnC) or the heart (CTnC, cardiac troponin C). The native (skinned) cardiac muscle is characteristically about 5 times more sensitive to activation by Sr2+ than fast muscle, but the STnC-loaded trabeculae gave response like fast muscle. Attempts were also made to exchange the TnC in psoas (fast-twitch muscle) fibers, but unlike cardiac muscle tension response of the maximally extracted psoas fibers could be restored only with homologous STnC. CTnC was effective in partially extracted fibers, even though the uptake of CTnC was complete in the maximally extracted fibers. The results in this study establish that troponin C subunit is the key in setting the characteristic sensitivity for tension control in the myocardium above that in the skeletal muscle. Since a major difference between skeletal and cardiac TnCs is that one of the trigger sites (site I, residues 28-40 from the N terminus) is modified in CTnC and has reduced affinity for Ca2+ binding, the possibility is raised that this site has a modulatory effect on activation in different tissues and limits the effectiveness of CTnC in skeletal fibers.  相似文献   

12.
The primary purpose of this study was to determine whether various agents (adenosine 3-thiotriphosphate [ATP gamma S], trifluoperazine [TFP], troponin I, the catalytic subunit of the cyclic adenosine 3',5'-monophosphate dependent protein kinase [C-subunit], and calmodulin [CaM]) could be used to classify skinned fiber types, and then to determine whether the proposed mechanisms for Ca2+ regulation were consistent with the results. Agents (ATP gamma S, TFP, C-subunit, CaM) expected to alter a light chain kinase-phosphatase system strongly affect the Ca2+-activated tension in skinned gizzard smooth muscle fibers, whereas these agents have no effect on skinned mammalian striated and scallop adductor fibers. Troponin I, which is known to bind strongly to troponin C and CaM, inhibits Ca2+ activation of skinned mammalian striated and gizzard fibers but not scallop adductor muscle. The results in different types of skinned fibers are consistent with proposed mechanisms for Ca2+ regulation.  相似文献   

13.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

14.
Fiber isometric tension redevelopment rate (kTR) was measured during submaximal and maximal activations in glycerinated fibers from rabbit psoas muscle. In fibers either containing endogenous skeletal troponin C (sTnC) or reconstituted with either purified cardiac troponin C (cTnC) or sTnC, graded activation was achieved by varying [Ca2+]. Some fibers were first partially, then fully, reconstituted with a modified form of cTnC (aTnC) that enables active force generation and shortening in the absence of Ca2+. kTR was derived from the half-time of tension redevelopment. In control fibers with endogenous sTnC, kTR increased nonlinearly with [Ca2+], and maximal kTR was 15.3 +/- 3.6 s-1 (mean +/- SD; n = 26 determinations on 25 fibers) at pCa 4.0. During submaximal activations by Ca2+, kTR in cTnC reconstituted fibers was approximately threefold faster than control, despite the lower (60%) maximum Ca(2+)-activated force after reconstitution. To obtain submaximal force with aTnC, eight fibers were treated to fully extract endogenous sTnC, then reconstituted with a mixture of a TnC and cTnC (aTnC:cTnC molar ratio 1:8.5). A second extraction selectively removed cTnC. In such fibers containing aTnC only, neither force nor kTR was affected by changes in [Ca2+]. Force was 22 +/- 7% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 24 +/- 8% (mean +/- SD; n = 8) at pCa 4.0, whereas kTR was 98 +/- 14% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 96 +/- 15% (mean +/- SD; n = 8) at pCa 4.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle.  相似文献   

16.
The Ca(2+)-sensitive ATPase activity of rabbit skeletal myofibrils was desensitized by treatment with excess troponin T and was found to be activated irrespective of the Ca2+ concentrations. A SDS-gel electrophoretic study showed that both troponin C and troponin I were removed from the myofibrils on treatment with troponin T. The Ca(2+)- and Sr(2+)- sensitivities of the ATPase of troponin T-treated myofibrils reconstituted with troponin C. I were the same as in the intact myofibrils. The Ca(2+)-activated ATPase of rabbit skeletal myofibrils was also desensitized on treatment with chicken breast troponin T or its 26K fragment. The SDS-gel electrophoretic study revealed that troponin T, in addition to troponin C and troponin I, was also removed from the myofibrils and, instead, chicken breast troponin T or its 26K fragment was incorporated into the myofibrils. The Ca(2+)- sensitivity of myofibrils treated with chicken breast troponin T or its 26K fragment was then regained on reconstitution with troponin C.I. These findings indicate that the change in composition of myofibrils on treatment with troponin T or its 26K fragment is due to the selective replacement of the troponin C.I.T complex in the myofibrils as a whole with troponin T or its 26K fragment.  相似文献   

17.
The tension of single glycerinated rabbit skeletal muscle fiber was desensitized to a Ca(2+)-concentration after treatment with an excessive amount of bovine cardiac troponin T and reached a level of about 70% of the maximum tension of the untreated fiber. A SDS-gel electrophoretic examination indicated that troponin C.I.T complex in the fiber was replaced with the added cardiac troponin T. The Ca(2+)-sensitivity of the tension of the troponin T-treated fiber was then recovered by the addition of bovine cardiac troponins I and C. The rabbit skeletal muscle fiber thus hybridized with bovine cardiac troponin C.I.T showed the same cooperativity of Ca(2+)-activation as the cardiac muscle.  相似文献   

18.
Skinned fibers prepared from rabbit fast and slow skeletal and cardiac muscles showed acidotic depression of the Ca2+ sensitivity of force generation, in which the magnitude depends on muscle type in the order of cardiac>fast skeletal>slow skeletal. Using a method that displaces whole troponin-complex in myofibrils with excess troponin T, the roles of Tn subunits in the differential pH dependence of the Ca2+ sensitivity of striated muscle were investigated by exchanging endogenous troponin I and troponin C in rabbit skinned cardiac muscle fibres with all possible combinations of the corresponding isoforms expressed in rabbit fast and slow skeletal and cardiac muscles. In fibers exchanged with fast skeletal or cardiac troponin I, cardiac troponin C confers a higher sensitivity to acidic pH on the Ca2+ sensitive force generation than fast skeletal troponin C independently of the isoform of troponin I present. On the other hand, fibres exchanged with slow skeletal troponin I exhibit the highest resistance to acidic pH in combination with either isoform of troponin C. These results indicate that troponin C is a determinant of the differential pH sensitivity of fast skeletal and cardiac muscles, while troponin I is a determinant of the pH sensitivity of slow skeletal muscle.  相似文献   

19.
The number of specific Ca2+ bound to Akazara scallop troponin C was estimated to be 0.7 with an apparent binding constant of 5 x 10(5) M-1 (T. Ojima and K. Nishita, 1986, J. Biol. Chem. 261, 16749-16754). In the present paper, we report on the Ca(2+)-induced conformational changes in the troponin C and the interaction of the troponin C with rabbit troponin subunits. The Ca2+ binding to the troponin C caused a marked change in difference uv absorption spectra and a retardation of elution on Sephacryl S-200 gel filtration. However, its circular dichroism spectrum was hardly changed by the Ca2+ binding. These results suggest that the Ca2+ binding to the troponin C induced changes predominantly in tertiary structure rather than in secondary structure. Akazara scallop troponin C was shown to be able to bind to rabbit troponin I-Cellulofine affinity column, but the affinity was not greatly increased by Ca2+ unlike the case of rabbit troponin C. On hybridizing with rabbit troponin T and I, Akazara scallop troponin C was shown to be incapable of substituting rabbit troponin C; i.e., the hybrid troponin strongly inhibited the Mg-ATPase activity of rabbit actomyosin-tropomyosin irrespective of the presence or absence of Ca2+, thus recovering no Ca2+ sensitivity.  相似文献   

20.
1. A troponin C-like protein was prepared from frozen chicken gizzard by preparative polyacrylamide gel electrophoresis and its apparent molecular weight was estimated to be about 15,500 daltons. 2. In urea gel electrophoresis, the mobility of the troponin C-like protein increased slightly in the presence of Ca2+, like that of skeletal muscle troponin C. On the other hand, the mobility of the the troponin C-like protein in glycerol gel electrophoresis, unlike that of skeletal muscle troponin C, was significantly decreased by Ca2+. 3. In alkaline gel electrophoresis, the troponin C-like protein formed a Ca2+-dependent complex with troponin I or troponin T from skeletal muscle. 4. The troponin C-like protein could neutralize the inhibitory effect of skeletal muscle troponin I on the Mg2+-activated ATPase of actomyosin from rabbit skeletal muscle, but could not confer Ca2+-sensitivity on the actomyosin in the presence of troponin I and troponin T from skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号