首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate gibberellin (GA) signaling using the rice (Oryza sativa) GA receptor GIBBERELLIN-INSENSITIVE DWARF1 (GID1) mutant gid1-8, we isolated a suppressor mutant, Suppressor of gid1-1 (Sgd-1). Sgd-1 is an intragenic mutant containing the original gid1-8 mutation (L45F) and an additional amino acid substitution (P99S) in the loop region. GID1(P99S) interacts with the rice DELLA protein SLENDER RICE1 (SLR1), even in the absence of GA. Substitution of the 99th Pro with other amino acids revealed that substitution with Ala (P99A) caused the highest level of GA-independent interaction. Physicochemical analysis using surface plasmon resonance revealed that GID1(P99A) has smaller K(a) (association) and K(d) (dissociation) values for GA(4) than does wild-type GID1. This suggests that the GID1(P99A) lid is at least partially closed, resulting in both GA-independent and GA-hypersensitive interactions with SLR1. One of the three Arabidopsis thaliana GID1s, At GID1b, can also interact with DELLA proteins in the absence of GA, so we investigated whether GA-independent interaction of At GID1b depends on a mechanism similar to that of rice GID1(P99A). Substitution of the loop region or a few amino acids of At GID1b with those of At GID1a diminished its GA-independent interaction with GAI while maintaining the GA-dependent interaction. Soybean (Glycine max) and Brassica napus also have GID1s similar to At GID1b, indicating that these unique GID1s occur in various dicots and may have important functions in these plants.  相似文献   

2.
GIBBERELLIN INSENSITIVE DWARF1 (GID1) encodes a soluble gibberellin (GA) receptor that shares sequence similarity with a hormone-sensitive lipase (HSL). Previously, a yeast two-hybrid (Y2H) assay revealed that the GID1-GA complex directly interacts with SLENDER RICE1 (SLR1), a DELLA repressor protein in GA signaling. Here, we demonstrated, by pull-down and bimolecular fluorescence complementation (BiFC) experiments, that the GA-dependent GID1-SLR1 interaction also occurs in planta. GA(4) was found to have the highest affinity to GID1 in Y2H assays and is the most effective form of GA in planta. Domain analyses of SLR1 using Y2H, gel filtration, and BiFC methods revealed that the DELLA and TVHYNP domains of SLR1 are required for the GID1-SLR1 interaction. To identify the important regions of GID1 for GA and SLR1 interactions, we used many different mutant versions of GID1, such as the spontaneous mutant GID1s, N- and C-terminal truncated GID1s, and mutagenized GID1 proteins with conserved amino acids replaced with Ala. The amino acid residues important for SLR1 interaction completely overlapped the residues required for GA binding that were scattered throughout the GID1 molecule. When we plotted these residues on the GID1 structure predicted by analogy with HSL tertiary structure, many residues were located at regions corresponding to the substrate binding pocket and lid. Furthermore, the GA-GID1 interaction was stabilized by SLR1. Based on these observations, we proposed a molecular model for interaction between GA, GID1, and SLR1.  相似文献   

3.
The generally accepted role of iron-regulatory protein 1 (IRP1) in orchestrating the fate of iron-regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA-binding forms through assembly/disassembly of its Fe-S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron-regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe-S cluster, since a mutant with all cluster-ligating cysteines mutated to serine underwent iron-induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA-binding form and promoted iron-dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster-ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe-S cluster assembly/disassembly. IRP1 RNA-binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe-S cluster assembly or disassembly.  相似文献   

4.
When the gibberellin (GA) receptor GIBBERELLIN INSENSITIVE DWARF 1 (GID1) binds to GA, GID1 interacts with DELLA proteins, repressors of GA signaling. This interaction inhibits the suppressive function of DELLA protein and thereby activates the GA response. However, how DELLA proteins exert their suppressive function and how GID1s inhibit suppressive function of DELLA proteins is unclear. By yeast one-hybrid experiments and transient expression of the N-terminal region of rice DELLA protein (SLR1) in rice callus, we established that the N-terminal DELLA/TVHYNP motif of SLR1 possesses transactivation activity. When SLR1 proteins with various deletions were over-expressed in rice, the severity of dwarfism correlated with the transactivation activity observed in yeast, indicating that SLR1 suppresses plant growth through transactivation activity. This activity was suppressed by the GA-dependent GID1-SLR1 interaction, which may explain why GA responses are induced in the presence of GA. The C-terminal GRAS domain of SLR1 also exhibits a suppressive function on plant growth, possibly by directly or indirectly interacting with the promoter region of target genes. Our results indicate that the N-terminal region of SLR1 has two roles in GA signaling: interaction with GID1 and transactivation activity.  相似文献   

5.
SPINDLY (SPY) encodes an O-linked N-acetylglucosamine transferase that is considered to be a negative regulator of gibberellin (GA) signaling through an unknown mechanism. To understand the function of SPY in GA signaling in rice, we isolated a rice SPINDLY homolog (OsSPY) and produced knockdown transgenic plants in which OsSPY expression was reduced by introducing its antisense or RNAi construct. In knockdown plants, the enhanced elongation of lower internodes was correlated with decreased levels of OsSPY expression, similar to the spindly phenotype of Arabidopsis spy mutants, suggesting that OsSPY also functions as a negative factor in GA signaling in rice. The suppressive function of OsSPY in GA signaling was supported by the findings that the dwarfism was partially rescued and OsGA20ox2 (GA20 oxidase) expression was reduced in GA-deficient and GA-insensitive mutants by the knockdown of OsSPY function. The suppression of OsSPY function in a GA-insensitive mutant, gid2, also caused an increase in the phosphorylation of a rice DELLA protein, SLR1, but did not change the amount of SLR1. This indicates that the function of OsSPY in GA signaling is not via changes in the amount or stability of SLR1, but probably involves control of the suppressive function of SLR1. In addition to the GA-related phenotypes, OsSPY antisense and RNAi plants showed increased lamina joint bending, which is a brassinosteroid-related phenotype, indicating that OsSPY may play roles both in GA signaling and in the brassinosteroid pathway.  相似文献   

6.
The rice SLR1 (SLENDER RICE 1) gene encodes a DELLA protein that belongs to a subfamily of the GRAS protein superfamily and that functions as a repressor of gibberellin (GA) signaling. Based on the constitutive GA response phenotype of slr1 mutants, SLR1 has been thought to be the sole DELLA-type protein suppressing GA signals in rice. However, in rice genome databases we identified two sequences homologous to SLR1: SLR1-like1 and -2 (SLRL1 and -2). SLRL1 and SLRL2 contain regions with high similarity to the C-terminal conserved domains in SLR1, but lack the N-terminal conserved region of the DELLA proteins. The expression of SLRL1 was positively regulated by GA at the mRNA level and occurred preferentially in reproductive organs, whereas SLRL2 was moderately expressed in mature leaf organs and was not affected by GA. Transformation of SLRL1 into the slr1 mutant rescued the slender phenotype of this mutant. Moreover, overexpression of SLRL1 in normal rice plants induced a dwarf phenotype with an increased level of OsGA20ox2 gene expression and diminished the GA-induced shoot elongation, suggesting that SLRL1 acts as a repressor of GA signaling. Consistent with the fact that SLRL1 does not have a DELLA domain, which is essential for degradation of DELLA proteins, a level of SLRL1 protein was not degraded by application of gibberellic acid. However, the repressive activity of SLRL1 against GA signaling was much weaker than a truncated SLR1 lacking the DELLA domain. Based on these characteristics of SLRL1, the functional roles of SLRL1 in GA signaling in rice are discussed.  相似文献   

7.
8.
We explore the roles of gibberellin (GA) signaling genes SLEEPY1 (SLY1) and RGA-LIKE2 (RGL2) in regulation of seed germination in Arabidopsis thaliana, a plant in which the hormone GA is required for seed germination. Seed germination failure in the GA biosynthesis mutant ga1-3 is rescued by GA and by mutations in the DELLA gene RGL2, suggesting that RGL2 represses seed germination. RGL2 protein disappears before wild-type seed germination, consistent with the model that GA stimulates germination by causing the SCF(SLY1) E3 ubiquitin ligase complex to trigger ubiquitination and destruction of RGL2. Unlike ga1-3, the GA-insensitive sly1 mutants show variable seed dormancy. Seed lots with high seed dormancy after-ripened slowly, with stronger alleles requiring more time. We expected that if RGL2 negatively controls seed germination, sly1 mutant seeds that germinate well should accumulate lower RGL2 levels than those failing to germinate. Surprisingly, RGL2 accumulated at high levels even in after-ripened sly1 mutant seeds with 100% germination, suggesting that RGL2 disappearance is not a prerequisite for seed germination in the sly1 background. Without GA, several GA-induced genes show increased accumulation in sly1 seeds compared with ga1-3. It is possible that the RGL2 repressor of seed germination is inactivated by after-ripening of sly1 mutant seeds.  相似文献   

9.
10.
Previous studies implicated cysteine residues in the translational repressor (i.e. RNA binding) activity of the coat protein of bacteriophage MS2. It has been proposed that a protein sulfhydryl forms a transient covalent bond with an essential pyrimidine in the translational operator by a Michael addition reaction. We have utilized codon-directed mutagenesis methods to determine the importance of each of the two coat protein cysteines for repressor function in vivo. The results indicate that cys46 can be replaced by a variety of amino acids without loss of repressor function. Cys101, on the other hand, is more sensitive to substitution. Most position 101 substitutions inactivate the repressor, but one (arginine) results in normal repressor activity. Although the possibility of a transient covalent contact between cys101 and RNA is not categorically ruled out, construction of double mutants demonstrates that cysteines are not absolutely required for translational repression by coat protein.  相似文献   

11.
12.
The phytohormone gibberellin (GA) controls growth and development in plants. Previously, we identified a rice F-box protein, gibberellin-insensitive dwarf2 (GID2), which is essential for GA-mediated DELLA protein degradation. In this study, we analyzed the biological and molecular biological properties of GID2. Expression of GID2 preferentially occurred in rice organs actively synthesizing GA. Domain analysis of GID2 revealed that the C-terminal regions were essential for the GID2 function, but not the N-terminal region. Yeast two-hybrid assay and immunoprecipitation experiments demonstrated that GID2 is a component of the SCF complex through an interaction with a rice ASK1 homolog, OsSkp15. Furthermore, an in vitro pull-down assay revealed that GID2 specifically interacted with the phosphorylated Slender Rice 1 (SLR1). Taken these results together, we conclude that the phosphorylated SLR1 is caught by the SCFGID2 complex through an interacting affinity between GID2 and phosphorylated SLR1, triggering the ubiquitin-mediated degradation of SLR1.  相似文献   

13.
14.
DELLA proteins are nuclear repressors of plant gibberellin (GA) responses. Here, we investigate the properties of SLN1, a DELLA protein from barley that is destabilized by GA treatment. Using specific inhibitors of proteasome function, we show that proteasome-mediated protein degradation is necessary for GA-mediated destabilization of SLN1. We also show that GA responses, such as the aleurone alpha-amylase response and seedling leaf extension growth, require proteasome-dependent GA-mediated SLN1 destabilization. In further experiments with protein kinase and protein phosphatase inhibitors, we identify two additional signaling steps that are necessary for GA response and for GA-mediated destabilization of SLN1. Thus, GA signaling involves protein phosphorylation and dephosphorylation steps and promotes the derepression of GA responses via proteasome-dependent destabilization of DELLA repressors.  相似文献   

15.
16.
The cellular protein BST-2/CD317/Tetherin has been shown to inhibit the release of HIV-1 and other enveloped viruses from infected cells. The HIV-1 accessory protein Vpu binds to both BST-2 and βTrCP, a substrate-recognition subunit for the SCF (Skip1-Cullin1-F-box protein) E3 ubiquitin ligase complex. This interaction leads to both the degradation of BST-2 and the enhancement of viral egress. Recently BST-2 was shown to be ubiquitinated in this process. Here we have confirmed the Vpu- and βTrCP-dependent multi/polyubiquitination of BST-2. Ubiquitinated BST-2 accumulated in cells treated with a lysosomal inhibitor but not a proteasomal inhibitor. Additionally, we observed that a BST-2 mutant deleted for its cytosolically exposed lysine residues is also ubiquitinated. Subsequent experiments suggested that Vpu promotes BST-2 ubiquitination upon amino acid residues bearing hydroxyl- but not thiol-bearing side chains. However, a BST-2 mutant bearing substitutions for its cytoplasmically exposed Ser, Thr, and Lys residues was still down-regulated, ubiquitinated, and degraded in a Vpu-dependent manner. Our results suggest that Vpu may target either the BST-2 cytoplasmic Tyr residues or the NH(2) terminus itself for ubiquitination.  相似文献   

17.
Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1   总被引:14,自引:0,他引:14  
DELLA proteins are repressors of gibberellin signaling in plants. Our previous studies have indicated that gibberellin signaling is derepressed by SCF(GID2)-mediated proteolysis of the DELLA protein, SLENDER RICE1 (SLR1), in rice. In addition, the gibberellin-dependent increase of phosphorylated SLR1 in the loss-of-function gid2 mutant suggests that the SCF(GID2)-mediated degradation of SLR1 might be initiated by gibberellin-dependent phosphorylation. To confirm the role of phosphorylation of SLR1 in its gibberellin-dependent degradation, we revealed that SLR1 is phosphorylated on an N-terminal serine residue(s) within the DELLA/TVHYNP and polyS/T/V domain. However, gibberellin-induced phosphorylation in these regions was not observed in the gid2 mutant following the constitutive expression of SLR1 under the control of the rice actin1 promoter. Treatment with gibberellin induced both the phosphorylated and non-phosphorylated forms of SLR1 with similar induction kinetics in gid2 mutant cells. Both the phosphorylated and non-phosphorylated SLR1 proteins were degraded by gibberellin treatment with a similar half-life in the rice callus cells, and both proteins interacted with recombinant glutathione S-transferase (GST)-GID2. These results demonstrate that the phosphorylation of SLR1 is independent of its degradation and is dispensable for the interaction of SLR1 with the GID2/F-box protein.  相似文献   

18.
19.
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.  相似文献   

20.
The Drosophila pipe gene encodes ten related proteins that exhibit amino acid sequence similarity to vertebrate heparan sulfate 2-O-sulfotransferase. One of the Pipe isoforms, which is expressed in the ventral follicular epithelium, is a key determinant of embryonic dorsoventral polarity, suggesting that Pipe-mediated sulfation of a heparan sulfate proteoglycan provides a spatial cue for dorsoventral axis formation. We used several approaches to investigate this possibility in the work described here. We determined the nucleotide alterations in 11 different pipe alleles. Ten of the mutations specifically affect the pipe isoform that is expressed in the ovary. Among these ten mutations, two alter an amino acid in the putative binding site for 3'-phosphoadenosine 5'-phosphosulfate, the universal sulfate donor. Using Alcian Blue, a histochemical stain that detects sulfated glycans, we observed a novel, pipe-dependent macromolecule in the embryonic salivary glands. Genes known to participate in the formation of heparan sulfate in Drosophila are not required for the production of this material. To investigate whether a heparan sulfate proteoglycan is involved in pipe function in dorsoventral patterning, we generated females carrying follicle cell clones mutant for heparan sulfate synthesis-related genes. Embryos from follicles with mutant clones did not exhibit a dorsalized phenotype. Taken together, our data provide evidence that Pipe acts as a sulfotransferase, but argue against the hypothesis that the target of Pipe is a heparan sulfate glycosaminoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号