首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.  相似文献   

2.
The effect of auxin on stamen and pistil development in tobacco flowers was investigated by means of the localized expression of rolB (root loci B), an Agrobacterium oncogene that increases auxin sensitivity in a cell-autonomous fashion. When rolB is driven by the promoter of the meiosis-specific Arabidopsis gene DMC1 (disrupted meiotic cDNA 1), expression occurs earlier in male than in female developing organs, resulting in a delay in anther dehiscence with respect to normal timing of pistil development. As a consequence of this developmental uncoupling, self-pollination is prevented in pDMC1:rolB plants. Histological analysis of pDMC1:GFP plants indicates that in tobacco, this promoter is active not only in meiocytes but also in somatic tissues of the anther. In contrast, simultaneous expression of rolB in anther and pistil somatic tissues, achieved by expressing a construct containing rolB under the control of the promoter of the petunia gene FBP7 (floral binding protein 7), results in a concomitant delay of both anther dehiscence and pistil development without affecting self-pollination of the plants. Analysis of plants harboring the pFBP7:GUS construct shows that in tobacco, this promoter is active not only in the ovules, as described for petunia, but also in pistil and anther somatic tissues involved in the dehiscence program. The delay in anther dehiscence and pistil development could be phenocopied by exogenous application of auxin. Jasmonic acid (JA) could not rescue the delay in anther dehiscence. These results suggest that auxin plays a key role in the timing of anther dehiscence, the dehiscence program is controlled by the somatic tissues of the anther, and auxin also regulates pistil development.  相似文献   

3.
4.
5.
Alfalfa (Medicago sativa) and Arabidopsis were used as model systems to examine molecular mechanisms underlying developmental effects of a microsomal UDP-glucuronosyltransferase-encoding gene from pea (Pisum sativum; PsUGT1). Alfalfa expressing PsUGT1 antisense mRNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited delayed root emergence, reduced root growth, and increased lateral root development. The timing of root emergence in wild-type and antisense plants was correlated with the transient accumulation of auxin at the site of root emergence. Cell suspension cultures derived from the antisense alfalfa plants exhibited a delay in cell cycle from 24-h in the wild-type plants to 48-h in the antisense plants. PsUGT1::uidA was introduced into Arabidopsis to demonstrate that, as in alfalfa and pea, PsUGT1 expression occurs in regions of active cell division. This includes the root cap and root apical meristems, leaf primordia, tips of older leaves, and the transition zone between the hypocotyl and the root. Expression of PsUGT1::uidA colocalized with the expression of the auxin-responding reporter DR5::uidA. Co-expression of DR5::uidA in transgenic Arabidopsis lines expressing CaMV35S::PsUGT1 revealed that ectopic expression of CaMV35S::PsUGT1 is correlated with a change in endogenous auxin gradients in roots. Roots of ecotype Columbia expressing CaMV35S::PsUGT1 exhibited distinctive responses to exogenous naphthalene acetic acid. Completion of the life cycle occurred in 4 to 6 weeks compared with 6 to 7 weeks for wild-type Columbia. Inhibition of endogenous ethylene did not correct this early senescence phenotype.  相似文献   

6.
Sexual and apomictic development in Hieracium   总被引:2,自引:2,他引:0  
 Most members of the genus Hieracium are apomictic and set seed without fertilization, but sexual forms also exist. A cytological study was conducted on an apomictic accession of H. aurantiacum (A3.4) and also H. piloselloides (D3) to precisely define the cellular basis for apomixis. The apomictic events were compared with the sexual events in a self-incompatible isolate of H. pilosella (P4). All plants were maintained as vegetatively propagated lines each derived from a single plant. Sexual P4 exhibited characteristic events of polygonum-type embryo sac formation, showed no latent apomitic tendencies, and depended upon fertilization to set seed. In contrast, D3 and A3.4 were autonomous aposporous apomicts, forming both embryo and endosperm spontaneously inside an unreduced embryo sac. The two apomicts exhibited distinct mechanisms, but variation was also observed within each apomictic line. Seeds from apomicts often contained more than one embryo. A degree of developmental instability was also observed amongst germinated seedlings and included variation in meristem and cotyledon number, altered phyllotaxis, callus formation, and seedling fusion. In most cases abnormal seedlings developed into normal plants. Such phenomena were not observed following germination of hybrid seeds derived from crosses between sexual P4 and the apomictic plants. The three plants can now be used in inheritance studies and also to investigate the molecular mechanisms controlling apomixis. Received: 11 February 1998 / Revision accepted: 23 July 1998  相似文献   

7.
Plants differ from most animals in their ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems harboring new stem cell niches. In seed plants, this is achieved by axillary meristems, which are established in the axil of each leaf base and develop into lateral branches. Here, we describe the initial processes of Arabidopsis thaliana axillary meristem initiation. Using reporter gene expression analysis, we find that axillary meristems initiate from leaf axil cells with low auxin through stereotypical stages. Consistent with this, ectopic overproduction of auxin in the leaf axil efficiently inhibits axillary meristem initiation. Furthermore, our results demonstrate that auxin efflux is required for the leaf axil auxin minimum and axillary meristem initiation. After lowering of auxin levels, a subsequent cytokinin signaling pulse is observed prior to axillary meristem initiation. Genetic analysis suggests that cytokinin perception and signaling are both required for axillary meristem initiation. Finally, we show that cytokinin overproduction in the leaf axil partially rescue axillary meristem initiation-deficient mutants. These results define a mechanistic framework for understanding axillary meristem initiation.  相似文献   

8.
Arabidopsis pinoid mutants show a strong phenotypic resemblance to the pin-formed mutant that is disrupted in polar auxin transport. The PINOID gene was recently cloned and found to encode a protein-serine/threonine kinase. Here we show that the PINOID gene is inducible by auxin and that the protein kinase is present in the primordia of cotyledons, leaves and floral organs and in vascular tissue in developing organs or proximal to meristems. Overexpression of PINOID under the control of the constitutive CaMV 35S promoter (35S::PID) resulted in phenotypes also observed in mutants with altered sensitivity to or transport of auxin. A remarkable characteristic of high expressing 35S::PID seedlings was a frequent collapse of the primary root meristem. This event triggered lateral root formation, a process that was initially inhibited in these seedlings. Both meristem organisation and growth of the primary root were rescued when seedlings were grown in the presence of polar auxin transport inhibitors, such as naphthylphtalamic acid (NPA). Moreover, ectopic expression of PINOID cDNA under control of the epidermis-specific LTP1 promoter provided further evidence for the NPA-sensitive action of PINOID. The results presented here indicate that PINOID functions as a positive regulator of polar auxin transport. We propose that PINOID is involved in the fine-tuning of polar auxin transport during organ formation in response to local auxin concentrations.  相似文献   

9.
WUSCHEL(WUS)是近年报道的一个重要的干细胞调控基因.本实验用RT-PCR技术从拟南芥(Arabidopsisthaliana L.)中克隆到其cDNA并构建了双增强的CaMV3 5S启动子驱动的超表达载体pBKB.借助农杆菌(Agrobacterium tumefaciens)介导转化烟草(Nicotiana tabacum L.),获得转基因植株.PCR和RT-PCR鉴定分别证明,外源WUS已整合到烟草基因组并已表达.转基因烟草地上部分出现大量异位增生的突起,扫描电镜观察表明:突起部分的细胞与分生组织细胞相似,部分突起能够发育为叶芽、花芽,表明WUS超表达引起烟草细胞异常分裂并在已分化组织中重新启动了器官形成.茎尖和花的内两轮器官没有上述变化.结合拟南芥的有关研究,推测烟草中可能也存在类似拟南芥WUS和其阻抑蛋白CLAVATA3、AGAMOUS间的反馈调节机制.转基因烟草叶发育表型变化明显,与生长素极性运输受抑制引起的表型相似,因此,作为生长点调控基因,WUS可能通过生长素对叶的发育进行调控.本研究为WUS基因的功能分析和有关生物技术应用提供了有意义的信息.  相似文献   

10.
拟南芥WUSCHEL基因在转基因烟草中的超表达(英文)   总被引:1,自引:0,他引:1  
The Arabidopsis WUSCIHIEL (WUS) gene plays a key role in the specification of the stem cellsin the shoot apical meristem (SAM). A cDNA of WUShas been amplified with the RT-PCR approach fromArabidopsis. The plant overexpression vector was constructed. It was driven by a dual enhanced CaMV35Spromoter. The construct was transformed into tobacco (Nicotiana tabacum L.) via Agrobacterium mediation.Dramatic phenotypic changes appeared in the WUS overexpression transgenic plants. Aberrant celldivisions and ectopic organogenesis could be found in almost every aerial parts of the transgenic tobaccoexcept the meristems and the inner two floral whorls. The data showed a highly conserved function of WUSin tobacco, and suggested that WUS is involved in organogenesis. The leaves were malformed, whichstrongly matched those only described previously for plants grown in the presence of polar auxin transportinhibitors. It suggested a possible function of WUS in leaf development. These results provide usefulinformation for functional analysis of WUS and important biotechnological implication as well.  相似文献   

11.
Phenotypical alterations observed in rolB-transformed plants have been proposed to result from a rise in intracellular free auxin due to a RolB-catalyzed hydrolysis of auxin conjugates(J.J. Estruch, J. Schell, A. Spena [1991] EMBO J 10: 3125-3128).We have investigated this hypothesis in detail using tobacco (Nicotiana tabacum) mesophyll protoplasts isolated from plants transformed with the rolB gene under the control of its own promoter (BBGUS 6 clone) or the cauliflower mosaic virus 35S promoter (CaMVBT 3 clone). Protoplasts expressing rolB showed an increased sensitivity to the auxin-induced hyperpolarization of the plasma membrane when triggered with exogenous auxin. Because this phenotypical trait was homogeneously displayed over the entire population, protoplasts were judged to be a more reliable test system than the tissue fragments used in previous studies to monitor rolB gene effects on cellular auxin levels. Accumulation of free 1-[3H]-naphthaleneacetic acid (NAA) was equivalent in CaMVBT 3, BBGUS 6, and wild-type protoplasts, Naphthyl-[beta]-glucose ester, the major NAA metabolite in protoplasts, reached similar levels in CaMVBT 3 protoplasts, reached similar levels in CaMVBT 3 and normal protoplasts and was hydrolyzed at the same rate in BBGUS 6 and normal protoplasts. Furthermore, NAA accumulation and metabolism in BBGUS 6 protoplasts were independent of the rolB gene expression level. Essentially similar results were obtained with indoleacetic acid. Thus, it was concluded that the rolB-dependent behavior of transgenic tobacco protoplasts is not a consequence of modifying the intracellular auxin concentration but likely results from changes in the auxin perception pathway.  相似文献   

12.
Summary Growth characteristics of tobacco protoplasts containing rolA linked to its own promoter, or the rolB, or rolC genes of Agrobacterium rhizogenes linked to the Cauliflower Mosaic Virus 35S RNA promoter were compared with those from untransformed plants. RolA protoplasts require auxin and cytokinin for callus formation. Protoplasts overexpressing rolB and C form callus in the absence of exogenously applied auxin and cytokinin, respectively. Long term callus growth requires auxin, but the requirement for cytokinin is not critical. Optimal transient expression of an auxin responsive promoter element occurred at lower external levels of auxin in rolB and rolC protoplasts compared with untransformed protoplasts. Addition of putrescine was required for auxin responsive transient gene expression in rolA protoplasts suggesting that polyamines, or their products affect gene expression in rolA plants.Abbreviations T-DNA transferred DNA - TL-DNA left transferred DNA - NAA naphthalene acetic acid - PEG polyethylene glycol - GUS glucuronidase - CaMV cauliflower mosaic virus  相似文献   

13.
The Relationship between auxin transport and maize branching   总被引:8,自引:2,他引:6  
Maize (Zea mays) plants make different types of vegetative or reproductive branches during development. Branches develop from axillary meristems produced on the flanks of the vegetative or inflorescence shoot apical meristem. Among these branches are the spikelets, short grass-specific structures, produced by determinate axillary spikelet-pair and spikelet meristems. We investigated the mechanism of branching in maize by making transgenic plants expressing a native expressed endogenous auxin efflux transporter (ZmPIN1a) fused to yellow fluorescent protein and a synthetic auxin-responsive promoter (DR5rev) driving red fluorescent protein. By imaging these plants, we found that all maize branching events during vegetative and reproductive development appear to be regulated by the creation of auxin response maxima through the activity of polar auxin transporters. We also found that the auxin transporter ZmPIN1a is functional, as it can rescue the polar auxin transport defects of the Arabidopsis (Arabidopsis thaliana) pin1-3 mutant. Based on this and on the groundbreaking analysis in Arabidopsis and other species, we conclude that branching mechanisms are conserved and can, in addition, explain the formation of axillary meristems (spikelet-pair and spikelet meristems) that are unique to grasses. We also found that BARREN STALK1 is required for the creation of auxin response maxima at the flanks of the inflorescence meristem, suggesting a role in the initiation of polar auxin transport for axillary meristem formation. Based on our results, we propose a general model for branching during maize inflorescence development.  相似文献   

14.
Hu W  Feng B  Ma H 《Plant molecular biology》2011,76(1-2):57-68
A leaf undergoes determinate growth from a primordium on flank of the shoot apical meristem. Several intrinsic pathways restrict meristematic activity in the leaf of Arabidopsis; however, other factors remain to be defined. We report here that the overexpression of MINI ZINC FINGER1 (MIF1) or MIF3 disrupted the leaf determinate growth by inducing ectopic shoot meristems on leaf margins. These ectopic meristems occurred along margins of late rosette leaves at serration sinuses in an ERECTA-dependent manner. Expression of STM was activated in these ectopic meristems but not other leaf regions. The formation of ectopic meristems was independent of the BP gene but suppressed by exogenous gibberellic acid. In addition, reduced auxin response along leaf margins and subsequent response peak in the sinus were correlated with the occurrence of ectopic meristems. Our results suggest that the sinus of leaf serration is a quiescent domain possessing the potential for meristem formation. MIF1- or MIF3-overexpressing transgenic plants may provide a new genetic system for dissecting the molecular mechanism that maintains leaf determinate growth, and for understanding the interactions between hormone actions and meristematic activity.  相似文献   

15.
Determination of Arabidopsis floral meristem identity by AGAMOUS.   总被引:18,自引:1,他引:17       下载免费PDF全文
Y Mizukami  H Ma 《The Plant cell》1997,9(3):393-408
Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.  相似文献   

16.
The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development.  相似文献   

17.
18.
19.
20.
The results of studying of the induced apomixis in pollen of sea-buckthorn irradiated by the 60Co gamma-Radiation are considered. Was established that the most effective dose for pollination of the experimental plants is 50 k Gy. In total, from 46 seedlings 19 cases of apomictic origin were revealed, 7 individuals were found to be haploid (n = = 12) and 19 ones were diploid (2n = 24) of maternal origin. Was supposed that apomictic plants (19 seedlings) have parthenogenetic origin. The reason for such conclusion is that the irradiated anomalous pollen tubes despite not having spermia, are entering embryo sac and stimulate the development of apomictic embryo from non-fertilized female gametes. Apparently, pollen tubes cause the induction of DNA replication in the ovules and the development of parthenogenetic plants. Consequently, the described method can be used for the regulation of parthenogenesis in sea-buckthorn to change natural ratio (1 : 1) of male to female plants in desirable quantity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号