首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Thermoregulatory responses at ambient temperatures of 20 and 10° C in six male subjects wearing two different kinds of clothing were compared between summer and winter. The two different kinds of clothing were one insulating the upper half of the body lightly and the lower half of the body heavily (clothing A, the weight in the upper and lower halves of the body being, respectively, 489 g and 1278 g) and the other insulating the upper half of the body heavily and the lower half of the body lightly (clothing B: 1212 g and 559 g). The major findings are summarized as follow. (i) Rectal temperature was kept significantly higher in clothing B than in clothing A both in summer and winter. (ii) The fall of rectal temperature was significantly greater in summer than in winter in both types of clothing. (iii) Mean skin temperatures and skin temperatures in the face, chest, thigh and leg were significantly lower atT a of 10° C in summer than in winter in clothing A, while skin temperatures in the face and thigh were also significantly lower atT a of 10° C in summer than in winter in clothing B. (iv) Metabolic heat production was higher in summer than in winter at 20 and 10° C in both types of clothing. (v) The subjects felt cooler and colder toT a of 10° C in summer than in winter in both types of clothing. These different responses occurring between summer and winter are discussed mainly in terms of total conductance and dry heat loss.  相似文献   

2.
Timothy M. Casey 《Oecologia》1981,50(2):199-204
Summary Energy metabolism of brown lemmings in summer pelage was measured over long periods at several air temperatures, with and without a real nest or artificial nest material. Resting metabolism of lemmings at T a=-16°C was 43% higher than that of lemmings in nests. As T a increased, the difference between resting metabolism of animals with and without nests decreased and was similar at T a=20°C. The energy saved at rest is equivalent to a reduction of approximately 40% in the thermal conductance. Independent estimates of energy savings due to nest insulation by analysis of cooling curves of a lemming model with and without a nest suggest a 46% reduction in thermal conductance due to the nest. At T a=0°C, baby lemmings huddled in a nest had equilibrium temperature excesses (T b-T a) four to five times higher than isolated nestlings outside the nest. These data indicate that there is a substantial energy savings at ecologically relevant air temperatures, and that energy savings increase as T a decreases. If the insulative value of the nest is similar whether the animal is in summer or winter pelage, these data suggest that heat production of a resting lemming would be 0.88 W (about 1.6 times BMR), while in nests at subnivean air temperatures typical of Barrow, Alaska, during the winter.  相似文献   

3.
To examine the effects of age-related differences in thermoregulatory function on the clothing microclimate temperature (T m) andT m fluctuations while maintaining thermal comfort in daily life, 5 boys (group B, 10–11 years), 5 young men (group Y, 20–21 years) and 5 older men (group O, 60–65 years) volunteered to take part in this study. The subjects were asked to maintain thermal comfort as closely as possible in their daily lives.T m (temperatures between the skin surface and the innermost garment) at four sites (chest, back, upper arm, and thigh), skin temperature on the chest (T chest) and ambient temperature (T a) were measured over a period of 8–12 h from morning to evening on one day in each of the seasons, spring, summer, autumn, and winter. Records of ability to maintain thermal comfort and of adjustment of their clothes were kept by each subject.T a during periods of thermal comfort did not differ among the groups in any of the seasons. In group Y,T m was significantly lower at the thigh than at the other sites in spring, autumn, and winter (P<0.05) and fluctuations (CV) ofT m were significantly larger at the thigh than at other sites in autumn and winter (P<0.05). Similar tendencies were observed forT m and CV ofT m in group B. However,T m and CV ofT m in group O did not differ by site except for the autumnT m. Group O had a smaller CV at the thigh in winter (P<0.05), compared to groups B and Y, suggesting a smaller regional difference inT m fluctuation in group O. Group O adjusted their clothes even on the lower limbs (together with upper body) in order to maintain thermal comfort in accordance with changes inT a, while groups B and Y did so only on their upper bodies. These results sugest that compared to boys and young men, lower thermoregulatory function in older men may affectT m and CV ofT m as a result of clothing on lower limbs being adjusted differently in order to maintain thermal comfort.  相似文献   

4.
Summary Body temperature (T b), oxygen consumption , thermal conductance (C) and evaporative water loss (EWL) were measured at various air temperatures (T a) in two starlings which evolved in the tropics: a migratory species from a temperate climate,Sturnus vulgaris, and a resident, desert species,Onychognathus tristrami (Aves, Passeriformes, Sturnidae).AtT a's of 4–35°C both birds hadT b of 40.6°C. At 44°C,T b ofSturnus was 45.8°C and that ofOnychognathus 43.3°C.T a of 44°C was tolerated only byOnychognathus. The thermoneutral zone (TNZ) ofSturnus was in theT a range of 29.5°C–36.5°C, that ofOnychognathus 21.5–36.5°C. ofSturnus within its TNZ (BMR) was 2.37 ml O2 g–1 h–1, which is close to the expected BMR; that ofOnychognathus, 1.67 ml O2 g–1 h–1, is only 74% of the expected. AtT a'sNZ,C ofSturnus was twice as high as that ofOnychognathus and 1.68 times the expected value, whereasC ofOnychognathus was only 94% of the expected. At highT a'sOnychognathus had higherC thanSturnus. At either low or highT a's EWL ofSturnus was greater than ofOnychognathus.The responses shown bySturnus are typical of a tropical bird living in a moderate environment. This indicates that neither in USSR where it spends the summer, nor in Israel where it spends the winter, is this starling exposed to extreme temperatures.Onychognathus is better adapted not only to high but also to the low temperatures prevailing in mountainous regions of the desert.Symbols and abbreviations BMR basal metabolic rate - C thermal conductance - EWL evaporative water loss - HE evaporative heat loss - HP heat production - TNZ thermoneutral zone  相似文献   

5.
Summary Djungarian dwarf hamsters,Phodopus s. sungorus, were kept in natural photoperiodic conditions throughout the year, either inside at a constantT a of 23°C or outside subjected to seasonally varyingT a. Comparisons were made between hamsters from both conditions to evaluate the significance of seasonal changes in photoperiod and/orT a as environmental cues for seasonal acclimatization inPhodopus. Basal metabolic rate was lowest in July (1.68 ml/g·h) and highest in January (2.06 ml/g·h inPhodopus living outside), combined with a decrease inT 1c from 26°C in July to 20°C in January. This was parallelled by seasonal changes in body weight (summer 42 g, winter 25g), fur colouration, fur depth and the occurrence of short daily torpor.AtT a below thermoneutrality total energy requirements for thermoregulation in winter acclimatizedPhodopus were found 36% lower than summer values (e.g. at O°CT a in summer 1,160 mW, in winter 760 mW), which were effected by a combined strategy of reducing body weight (19%) together with improvements of thermal insulation of the body surface (17%). All seasonal changes were similar inPhodopus living inside or outside, suggesting that seasonal changes in photoperiod and not seasonal changes inT a is the overriding controller for the environmental cueing of seasonality in energy requirements for thermoregulation.This research was supported by the Deutsche Forschungsgemeinschaft (He 990)  相似文献   

6.
Heat production by means of oxygen consumptionVo2 (at Ta = 6° C, 25° C, 30° C, and 32° C) and non-shivering thermogenesis (NST) were studied in individuals of a diurnal rodent (Rhabdomys pumilio) and a nocturnal rodent (Praomys natalensis). The studied mice were acclimated to cold at Ta=8°C with a photoperiod of LD 12:12. On the otherhand specimens of these two species were acclimated at Ta=25°C with a long scotophase LD8:16. The results were compared with a control group (Ta=25° C, LD 12:12) and winter acclimatized individuals of both species.Vo2 in cold acclimated mice of both species was significantly increased when compared to the control group and was even higher than the winter acclimatized group when measured below the lower critical temperature. Long scotophase acclimated mice of both species also increased their oxygen consumption significantly when compared to the control group. NST was significantly increased in long scotophase acclimated mice from both species when compared to the control group. The results of this study indicate that the effects of acclimation to long scotophase are similar to those of cold acclimation. As changes in photoperiod are regular, it may be assumed that heat production mechanisms in acclimatization to winter will respond to changes in photoperiodicity.Present address: University of Haifa, Oranim, P.O. Kiryat Tivon, Israel.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

7.
We examined the thermoregulatory behaviour (TRB) of roosting Humboldt penguins (Spheniscus humboldti) in north central Chile during summer and winter, when ambient temperatures (Ta) are most extreme. Each body posture was considered to represent a particular TRB, which was ranked in a sequence that reflected different degrees of thermal load and was assigned an arbitrary thermoregulatory score. During summer, birds exhibited eight different TRBs, mainly oriented to heat dissipation, and experienced a wide range of Ta (from 14 to 31°C), occasionally above their thermoneutral zone (TNZ, from 2 to 30°C), this being evident by observations of extreme thermoregulatory responses such as panting. In winter, birds exhibited only three TRBs, mainly oriented to heat retention, and experienced a smaller range of Ta (from 11 to 18°C), always within the TNZ, even at night. The components of behavioural responses increased directly with the heat load which explains the broader behavioural repertoire observed in summer. Since penguins are primarily adapted in morphology and physiology to cope with low water temperatures, our results suggest that behavioural thermoregulation may be important in the maintenance of the thermal balance in Humboldt penguins while on land.  相似文献   

8.
The oxygen consumption of European finches, the siskin (Carduelis spinus), the brambling (Fringilla montifringilla), the bullfinch (Pyrhulla pyrhulla), the greenfinch (Carduelis chloris) and the hawfinch (Coccothraustes coccothraustes), was recorded continuously while ambient temperature was decreased stepwise from +30 down to-75°C. The oxygen consumption, body temperature (telemetrically), and shivering (integrated pectoral electromyography) of greenfinches were measured simultaneously at ambient temperatures between +30 and-75°C. Maximum heat production, cold limit, lower critical temperature, basal metabolic rate and thermal conductance (of the greenfinch) were determined. The diurnal variation of oxygen consumption of siskins and greenfinches was recorded at thermoneutrality and below the thermoneutral zone in winter- and summer-acclimatized birds. The diurnal variation of body temperature and thermal conductance of greenfinches were also determined. The diurnal variation of heat production was not seasonal or temperature dependent in the siskin and in the greenfinch. Nocturnal reduction of oxygen consumption saved 15–33% energy in the siskin and greenfinch. Body temperature of the greenfinch was lowered by 2.5–3.4°C. The nocturnal reduction of thermal conductance in the greenfinch was 39–48%. The basal metabolic rate was lowest in the largest bird (hawfinch) and highest in the smallest bird (siskin). The values were in the expected range. The heat production capacity of finches in winter was 4.7 times basal metabolic rate in the siskin, 4.2 times in the brambling, 3.5 times in the greenfinch and 2.9 times in the bullfinch and hawfinch. The heat production capacity of the siskin and greenfinch was not significantly lower in summer. The cold limit temperatures (°C) in winter were-61.2 in the siskin,-41.3 in the greenfinch,-37.0 in the bullfinch,-35.7 in the brambling and-28.9 in the hawfinch. The cold limit was 14.3°C higher in summer than in winter in the siskin and 8.7°C in the greenfinch. Thermal insulation of the greenfinch was significantly better in winter than in summer. The shivering of the greenfinch increased linearly when ambient temperature was decreased down to-40°C. Maintenance of shivering was coincident with season. In severe cold integrated pectoral electromyography did not correlate with oxygen consumption as expected. The possible existence of non-shivering thermogenesis in birds is discussed. It is concluded that the acclimatization of European finches is primarily metabolic and only secondly affected by insulation.Abbreviations AAT avian adipose tissue - bm body mass - BMR basal metabolic rate - C t thermal conductance - EMG electromyogram - HP heat production - HP max maximum heat production - MR metabolic rate - NST non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - T a ambient temperature - T b body temperature - T c colonic temperature - T 1c lower critical temperature - TNZ thermoneutral zone - T st shivering threshold temperature - V oxygen consumption  相似文献   

9.
Pepsin-solubilized collagen I from skin and bone was analyzed with regard to its thermal stability as a triple helical molecule in solution and afterin vitro fibril formation. Collagen I from human control bone was compared with samples showing deficiencies or surplus in the degree of hydroxylation of lysine. The helix to coil transitions were studied by circulardichroism measurements and limited trypsin digestion. Melting of fibrils from standardizedin vitro self-assembly was investigated turbidimetrically. Human control bone collagen I has a maximum transition rate (T m ) at 43.3°C in 0.05% acetic acid. This is 1.9°C above control skin (T m =41.4°C), most likely, due to a higher degree of prolyl hydroxylation—0.48 in bone vs. 0.41 in skin collagen I. Lysyl overhydroxylation of human and mouse bone collagen I appears to reduce theT m slightly (1°C). Underhydroxylated bone collagen has aT m which is 2°C below control. Melting temperatures ofin vitro formed fibrils are an indication for higher thermostability in parallel with an increase of lysyl hydroxylation. Accordingly, the melting temperature of such fibrils from human control skin, 49.3°C, exceeds control bone by 1.4°C. The degree of lysyl hydroxylation in these samples is 0.14 and 0.10, respectively. Further underhydroxylation (0.06) reduced it down to 45.4°C, while extensive overhydroxylation did not continue to increase the thermal stability of fibrils.  相似文献   

10.
Summary Values for basal metabolism, standard tidal volume (V T), standard minute volume ( ), and mean extraction efficiency (EO2) in the thermal neutral zone (TNZ) inAgapornis roseicollis (1.84 ml·min–1; 0.95 ml·br–1, STPD; and 33.3 ml·min–1, STPD; and 22.5%; respectively) were all very similar to values for these parameters previously measured inBolborhynchus lineola, a similarly sized, closely related species from a distinctly different habitat.Having both a lower critical temperature (Tlc) below and an upper critical temperature (Tuc) above those ofB. lineola, the TNZ ofA. roseicollis extended from 25° to at least 35°C. The thermal conductance below the TNZ ofA. roseicollis was 14% less than that ofB. lineola. Therefore, at 5°C the standard metabolic rate (SMR) of the former is 17% less than that of the latter, and at 35°C it is 20% less. At 5°CA. roseicollis has a lower EO2 and at 35°C a higher EO2 than that ofB. lineola. The patterns of resting energy metabolism and of ventilation ofA. roseicollis and ofB. lineola are consistent with the former species being better suited to living in a more variable thermal environment than the latter.MeanV T has a weak positive correlation with the rate of oxygen consumption ( ) at a constant ambient temperature (T a) but a much stronger correlation when resting increases in response to a decrease inT a.V t is the only ventilatory parameter which is linearly correlated toT a from 35° to –25°C. The data suggest thatT a may have a regulatory effect onV T somewhat independent of or .  相似文献   

11.
Summary The capacity for sustained, terrestrial locomotion in the cockroach. Blaberus discoidalis, was determined in relation to running speed, metabolic cost, aerobic capacity, and ambient temperature (T a=15, 23, and 34°C; acclimation temperature=24°C). Steady-state thoracic temperature (T tss) increased linearly with speed at each T a.The difference between T tss and T awas similar at each experimental temperature with a maximum increase of 7°C. Steady-state oxygen consumption (VO2ss) increased linearly with speed at each T aand had a low thermal dependence (Q10=1.0-1.4). The minimum cost of locomotion (the slope of the VO2ss versus speed function) was independent of T a.Cockroaches attained a maximal oxygen consumption (VO2max). increased with T afrom 2.1 ml O2·g-1·h-1 at 15°C to 4.9 ml O2·g-1·h-1 at 23°C, but showed no further increase at 34°C, VO2max increased 23-fold over resting VO2 at 23°C, 10-fold at 34°C, and 15-fold at 15°C. Endurance correlated with the speed at which VO2max was attained (MAS, maximal aerobic speed). Temperature affected the kinematics of locomotion. compared to cockroaches running at the same speed, but higher temperatures (23–34°C), low temperature (15°C) increased protraction time, reduced stride frequency, and reduced stability by increasing body pitching. The thermal independence of the minimum cost of locomotion (Cmin), the low thermal dependence of VO2ss (i.e., y-intercept of the VO2ss versus speed function), and a typical Q10 of 2.0 for VO2max combined to increase MAS and endurance in B. discoidalis when T awas increased from 15 to 23°C. Exerciserelated endothermy enabled running cockroaches to attain a greater VO2max, metabolic scope, and endurance capacity at 23°C than would be possible if T tss remained equal to T a. The MAS of B. discoidalis was similar to that of other arthropods that use trachea, but was 2-fold greater than ectotherms, such as salamanders, frogs, and crabs of a comparable body mass.Abbreviations T a ambient temperature - T t thoracic temperature - T tss steady state thoracic temperature during exercise - T trest thoracic temperature during rest - VO2 oxygen consumption - VO2rest oxygen consumption during rest - VO2ss steady-state oxygen consumption during exercise - VO2max maximal oxygen consumption; MAS maximum aerobic speed - C min minimum cost of locomotion - t end endurance time  相似文献   

12.
The terrestrial isopod, Porcellio scaber, was susceptible to subzero temperature: both freezing and chilling were injurious. The level of cold hardiness against chilling and freezing showed different patterns in their seasonal variation. The lower lethal temperature causing 50% mortality, an indicator of the tolerance to chilling, ranged from-1.37°C in August to-4.58°C in December. The whole body supercooling point, the absolute limit of freeze avoidance, was kept at about-7°C throughout the year. The winter decrease in lower lethal temperature was concomitant with an accumulation of low molecular weight carbohydrates which are possible protective reagents against chilling injury, whereas the less seasonally variable supercooling point seemed to be associated with the year-round presence of gut content. Food derivatives may act as efficient ice nucleators. The different trend in seasonal changes between lower lethal temperature and supercooling point may be related to the microclimate of the hibernacula in subnivean environments, where the winter temperature became lower than the lower lethal temperature in the summer active phase, but remained higher than the summer supercooling point.Abbreviations LLT50 lower lethal temperature inducing 50% mortality - SCP supercooling point - T a ambient air temperature - T s soil surface temperature  相似文献   

13.
We studied the relationship between locomotor performance and temperature in Liolaemus pictus argentinus, from the Andean-Patagonian forest, Argentina. We determined the running speed in long and sprint runs at four different body temperatures, the panting threshold, and minimum critical temperature. The results are discussed in relation to body temperature in the field and thermal preference in the laboratory (Tpref). L. p. argentinus achieved higher speed in sprint runs than in long runs at all temperatures. In order to know if pregnancy constrains performance in this viviparous species, the differences between pregnant females and the other adults were analysed. Pregnant females were at a disadvantage when running long distances, but in sprint runs they were able to run as efficiently as the rest of the individuals, suggesting that they mainly use sprint runs and this may explain their conspicuous more-withdrawn behaviour. In long runs, the performance optimal temperature for L. p. argentinus (To=30.7 °C) was below the 25th percentile for all body temperatures selected in the laboratory (set-point range of Tpref=34.6-37.9 °C), but similar to the mean field body temperature (32.1 °C). However, in sprint runs the To (36.3 °C) was within the set-point range of Tpref. The mean panting threshold (42.8 °C) and the mean minimum critical temperature (6.9 °C) were similar to those of other liolaemids. The results are evidence that L. p. argentinus is well-adapted to the temperatures available in their environment and that the species has a Tpref that allows the achievement of maximal locomotor performance in the most frequently used and probably the most important run type, the sprint run.  相似文献   

14.
Changes in body core temperature (T cor) and heat balance after an abrupt release of lower body negative pressure (LBNP) were investigated in 5 volunteers under the following conditions: (1) an ambient temperature (T a) of 20 °C or (2) 35 °C, and (3)T a of 25 °C with a leg skin temperature of 30°C or (4) 35°C. The leg skin temperature was controlled with water perfusion devices wound around the legs. Rectal (T re), tympanic (T ty) and esophageal (T es) temperatures, skin temperatures (7 sites) and oxygen consumption were measured. The intensity of LBNP was adjusted so that the amount of blood pooled in the legs was the same under all conditions. When a thermal balance was attained during LBNP, application of LBNP was suddenly halted. The skin temperatures increased significantly after the release of LBNP under all conditions, while oxygen consumption hardly changed. The release of LBNP caused significant falls inT cor s under conditions (1) and (3), but loweredT cor s very slightly under conditions (2) and (4). The changes inT es were always more rapid and greater than those ofT ty andT re. The falls inT ty andT re appeared to be explained by changes in heat balance, whereas the sharp drop ofT es could not be explained especially during the first 8 min after the release of LBNP. The results suggest that a fall inT cor after a release of LBNP is attributed to an increase in heat loss due to reflexive skin vasodilation and is dependent on the temperature of venous blood returning from the lower body. It is presumed thatT es may not be an appropriate indicator forT cor when venous return changes rapidly.  相似文献   

15.
Young sporophytes of short-stipe ecotype ofEcklonia cavafrom a warmer locality (Tei, Kochi Pref., southern Japan) and those of long-stipe ecotype from a cooler locality (Nabeta, Shizuoka Pref., central Japan) were transplanted in 1995 to artificial reefs immersed at the habitat of long-stipe ecotype in Nabeta Bay, Shizuoka Pref., central Japan. The characteristics of photosynthesis and respiration of bladelets of the transplanted sporophytes of the two ecotypes were compared in winter and summer 1997; the results were assessed per unit area, per unit chlorophyllacontent and per unit dry weight. In photosynthesis-light curves at 10–29 °C, light saturation occurred at 200–400 mol photon m–2s–1in sporophytes from both Tei and Nabeta. The maximum photosynthetic rate (P max) at 10–29 °C and the light-saturation index (I k) at 25–29 °C in sporophytes from both localities were generally higher in winter than in summer.P maxat 25–29 °C (per unit area and chlorophylla) were higher in sporophytes from Tei than those from Nabeta in both seasons. The optimum temperature for photosynthesis was 25 °C in winter and 27 °C in summer at high light intensities of 100–400 mol photon m–2s–1. However, at lower light intensities of 12.5–50 mol photon m–2s–1, it was 20 °C in winter and 25–27 °C in summer for sporophytes from both locations. Dark respiration increased with temperature rise in the range of 10–29 °C in sporophytes from both locations in summer and winter. The sporophytes transplanted from Tei (warmer area) showed higher photosynthetic activities than those from Nabeta (cooler area) at warmer temperatures even under the same environmental conditions. This indicates that these physiological ecotypes have arisen from genetic differentiation.  相似文献   

16.
The present study aims to understand the effects of interindividual differences in thermal comfort on the relationship between the preferred temperature and the thermoregulatory responses to ambient cooling. Thirteen young women subjects chose the preferred ambient temperature (preferred Ta) in a climate chamber and were categorized into the H group (preferring ≥29 °C; n=6) and the M group (preferring <29 °C; n=7). The H group preferred warmer sensations than the M group (P<0.05) and the average of preferred Ta was 27.6 °C and 30.2 °C in the M group and H group, respectively. Then all subjects were exposed to temperature variations in the climate chamber. During Ta variations from 33 °C to 25 °C, the H group felt colder than the M group, although no difference was noted in the Tsk (mean skin temperature) and Ts-hand between the 2 groups. From the view of the relationship between the Tsk and thermal sensation, although the thermal sensitivity to the Tsk was almost similar in the H and M groups, the H group might have lower threshold to decreasing Ta than the M group.  相似文献   

17.
The relationship between distributional boundaries and temperature responses of some Northeast American and West European endemic and amphiatlantic rhodophytes was experimentally determined under varying regimes of temperature, light, and daylength. Potentially critical temperatures, derived from open ocean surface summer and winter isotherms, were inferred from distributional data for each of these algae. On the basis of the distributional data the algae fall within the limits of three phytogeographic groups: (1) the Northeast American tropical-to-temperate group; (2) the warm-temperate Mediterranean Atlantic group; and (3) the amphiatlantic tropical-to-warm temperate group. Experimental evidence suggests that the species belonging to the northeast American tropical-to-temperate group(Grinnellia americana, Lomentaria baileyana, andAgardhiella subulata) have their northern boundaries determined by a minimum summer temperature high enough for sufficient growth and/or reproduction. The possible restriction of 2 species (G. americana andL. baileyana) to the tropical margins may be caused by summer lethal temperatures (between 30 and 35 °C) or because the gradual disintegration of the upright thalli at high temperatures (>30 °C) promotes an ephemeral existence of these algae towards their southern boundaries. Each of the species have a rapid growth and reproductive potential between 15–30 °C with a broad optimum between 20–30 °C. The lower limit of survival of each species was at least 0 °C (tested in short days only). Growth and reproduction data imply that the restrictive distribution of these algae to the Americas may be due to the fact that for adequate growth and/or reproduction water temperatures must exceed 20 °C. At temperatures 15 °C reproduction and growth are limited, and the amphiatlantic distribution through Iceland would not be permitted. On the basis of experimental evidence, the species belonging to the warm-temperate Mediterranean Atlantic group(Halurus equisetifolius), Callophyllis laciniata, andHypoglossum woodwardii), have their northern boundaries determined by winter lethal temperatures. Growth ofH. equisetifolius proceeded from 10–25 °C, that ofC. laciniata andH. woodwardii from 5–25 °C, in each case with a narrow range for optimal growth at ca. 15 °C. Tetrasporelings ofH. woodwardii showed limited survival at 0 °C for up to 4 d. For all members of the group tetrasporangia occurred from 10–20 °C. The southern boundary ofH. equisetifolius andC. laciniata is a summer lethal temperature whereas that ofH. woodwardii possibly is a winter growth and reproduction limit. Since each member of this group has a rather narrow growth and survival potential at temperatures <5 °C and >20 °C, their occurrence in northeast America is unlikely. The (irregular) distribution ofSolieria tenera (amphiatlantic tropical-to-warm temperate) cannot be entirely explained by the experimental data (possibly as a result of taxonomic uncertainties).Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

18.
Summary D. maculata, the white-faced hornet, stabilized (regulated) thoracic temperature (T Th) over wide ranges of ambient temperature (T a), whileV. vulgaris, the common yellowjacket, regulatedT Th poorly. The hornets also maintained a higherT Th than the wasps, sometimes heating 38°C aboveT a. Attacking individuals of both species had higherT Th than those either leaving or returning to the nest from foraging. The hornets, who are primarily hunters of live prey, showed peak activity near dawn, and they were as active atT a=2°C as at 20°C. Being able to regulate theirT Th and fly at the lowT a should enhance their ability to capture small insects that are usually torpid at theseT a. The yellowjacket wasps, on the other hand, who are scavengers as well as hunters, did not leave the nest at 2°C; their activity decreased greatly with decreasingT a. Differences in the foraging technique of the two vespids may be related to their different abilities to thermoregulate.  相似文献   

19.
Eight men aged 60–65 years and six men aged 20–25 years, wearing only swimming trunks, were exposed to an air temperature of 17° C and 45% R.H. in each of the four seasons. The increase in the rate of metabolic heat production for the older group in the cold test was significantly higher in summer and autumn than in winter and spring (P<0.05), but did not differ in the young group between seasons. Compared to the young group the was significantly greater for the older group (due to a marked increase in four individuals) in summer and autumn (P<0.04). At the end of the period of cold exposure, the decrements of rectal temperature (T re), mean skin temperature ( ; due to a marked decrease in four individuals) and foot skin temperature (T foot) were significantly greater for the older group compared to the young group at all times of the year (P<0.003). Seasonal variations in the two groups were similar, e.g., theTre gradually became smaller from summer to winter (P<0.05) and then increased slightly in the spring (P=0.07).T foot for both groups decreased from summer to autumn (P<0.01) and remained unchanged subsequently. No seasonal variations were observed for in either group. The increase in diastolic blood pressure (BPd) during the test was significantly smaller in winter in both groups (P<0.05). BPd became larger again during spring in the older group (P<0.01), but remained low in the young group. The BPd was significantly greater for the older group than the young group in winter and spring (P<0.05). Compared to young men these results suggest that older men may lose the tolerance acquired by earlier cold acclimatization as seen by the BPd responses, and have a somewhat lower thermoregulatory capability in coping with mild cold air in all seasons.  相似文献   

20.
Summary Lacerta viridis maintained under natural photoperiodic conditions show daily and seasonal changes in metabolic rates and body temperature (T b) as well as seasonal differences in sensitivity to temperature change. At all times of the year lizards have a daily fluctuation in oxygen consumption, with higher metabolic rates during the light phase of the day when tested at a constant ambient temperature (T a) of 30°C. Rhythmicity of metabolic rate persists under constant darkness, but there is a decrease in the amplitude of the rhythm.Oxygen consumption measured at various Tas shows significant seasonal differences at T as above 20°C. Expressed as the Arrhenius activation energy, metabolic sensitivity of Lacerta viridis shows temperature dependence in autumn, which changes to metabolic temperature independence in spring at T as above 20°C. The results indicate a synergic relationship between changing photoperiod and body temperature selection, resulting in seasonal metabolic adjustment and seasonal adaptation.Abbreviations ANOVA analysis of variance - LD long day (16 h light) - SD short day (8 h light) - T a ambient temperature - T b body temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号