首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the chromatographic conditions used in these studies we observed time- and concentration-dependent formation of N-1-Deoxy-fructos-1-yl glutathione as the major glycation product formed in the mixtures of GSH with glucose. N-1-Deoxy-fructos-1-yl glutathione had a characteristic positively charged ion with m/z=470 Th in its LC-MS spectra. Mixtures of glutathione disulfide and glucose generated two compounds: N-1-Deoxy-fructos-1-yl GSSG (m/z=775 Th) as major adduct and bis di-N, N'-1-Deoxy-fructos-1-yl GSSG (m/z=937 Th) as the minor one. All three compounds showed a resonance signal at 55.2 ppm in the 13C-NMR spectra as C1 methylene group of deoxyfructosyl, which represents direct evidence that they are Amadori compounds. All three compounds purified from GSSG/Glc or GSH/Glc mixtures also showed LC-MS/MS fragmentation patterns identical to those of the synthetically synthesized N-1-Deoxy-fructos-1-yl glutathione, N-1-Deoxy-fructos-1-yl GSSG and bis di-N, N'-1-Deoxy-fructos-1-yl GSSG. N-1-Deoxy-fructos-1-yl glutathione was shown to be a poor substrate for glutathione peroxidase (6.7% of the enzyme's original specific activity) and glutathione-S-transferase (25.7% of the original enzyme's specific activity). Glutathione reductase failed to recycle the disulfide bond within the structure of di-substituted bis di-N, N'-1-Deoxy-fructos-1-yl GSSG. It showed only 1% of the original enzyme's specific activity, but retained its ability to reduce the disulfide bond within the structure of N-1-Deoxy-fructos-1-yl GSSG by 57% of its original specific activity. Since the GSH concentration in diabetic lens is significantly decreased and the glucose concentration can increase 10-fold and higher, the formation of Amadori products of the different forms of glutathione with this monosaccharide may be favored under these conditions and could contribute to a lowering of glutathione levels and an increase of oxidative stress observed in diabetic lens.  相似文献   

2.
A simple, highly selective, sensitive and reproducible liquid chromatography-electrospray ionization mass spectrometry method has been developed for the direct and simultaneous determination of reduced (GSH) and oxidized (GSSG) glutathione in microdialysis samples from human dermis. Chromatographic separation was carried out on an MODULO CART QS KROMASIL 5C18 (250 mm × 2 mm × 5 μm) analytical column at a flow rate of 0.25 ml/min. An isocratic mode was used and consisted of acidified water and acetonitrile (50/50, v/v). To improve the sensitivity, silver nitrate was added as post-column reagent. A trap mass spectrum was used equipped with an ESI interface. The limits of detection and quantification were respectively 0.12 and 0.4 ng/ml for GSH and 0.2 and 0.5 ng/ml for GSSG. Intra-day and inter-day accuracy and precision were determined and the variability was less than 6.2% (R.S.D.).  相似文献   

3.
Capillary electrophoresis (CE) has become a useful analytical tool for the analysis of microdialysis samples. However, CE with UV detection (CE-UV) does not provide detection limits sufficient to quantify glutathione (GSH) and glutathione disulfide (GSSG) in biological samples such as liver microdialysates, because of the small optical path length in the capillary. To overcome this limitation, an on-column preconcentration technique, pH-mediated base stacking, was used in this study to improve the sensitivity of CE-UV. This stacking technique allowed large volumes of high ionic strength sample injection without deterioration of the separation efficiency and resolution. A 26-fold increase in sensitivity was achieved for both GSH and GSSG using the pH-mediated base stacking, relative to normal injection without stacking. The limit of detection for GSH and GSSG was found to be 0.75 microM (S/N=6) and 0.25 microM (S/N=6), respectively. The developed method was used to analyze GSH and GSSG in liver microdialysates of anesthetized Sprague Dawley male rats. The basal concentrations of GSH and GSSG in the liver microdialysates of male rats were found to be 4.73+/-2.08 microM (n=7) and 5.52+/-3.66 microM (n=7), respectively.  相似文献   

4.
Inhibition of glutathione disulfide reductase by glutathione   总被引:2,自引:0,他引:2  
Rat-liver glutathione disulfide reductase is significantly inhibited by physiological concentrations of the product, glutathione. GSH is a noncompetitive inhibitor against GSSG and an uncompetitive inhibitor against NADPH at saturating concentrations of the fixed substrate. In both cases, the inhibition by GSH is parabolic, consistent with the requirement for 2 eq. of GSH in the reverse reaction. The inhibition of GSSG reduction by physiological levels of the product, GSH, would result in a significantly more oxidizing intracellular environment than would be realized in the absence of inhibition. Considering inhibition by the high intracellular concentration of GSH, the steady-state concentration of GSSG required to maintain a basal glutathione peroxidase flux of 300 nmol/min/g in rat liver is estimated at 8-9 microM, about 1000-fold higher than the concentration of GSSG predicted from the equilibrium constant for glutathione reductase. The kinetic properties of glutathione reductase also provide a rationale for the increased glutathione (GSSG) efflux observed when cells are exposed to oxidative stress. The resulting decrease in intracellular GSH relieves the noncompetitive inhibition of glutathione reductase and results in an increased capacity (Vmax) and decreased Km for GSSG.  相似文献   

5.
Selenite has been found to be an active catalyst for the oxidation of sulphhydryl compounds, such as glutathione (GSH). Considering the biological importance of GSH oxidation and the implication of sulphhydryl compounds in selenium poisoning and other biological activities, more information on selenite oxidation of GSH in enzyme-free conditions is desirable. Herein, we describe glutathione and sodium selenite simply mixed in aqueous solutions. The interaction products and transient intermediate are identified and characterized using electrospray ionization (ESI) tandem mass spectrometry. In the first step, GSH directly reacts to form diglutathione (GSSG) and unstable selenodiglutathione (GS-Se-SG). Then selenodiglutathione further reacted with remaining GSH to form diglutathione and elemental selenium, Se(0). As the amount of GSSG significantly increased or acidity of the solution increased, the redox potential of glutathione [E(0')(GSSG/2GSH) approximately -250 mV (NHE)] significantly shifted to the positive direction. This makes the GSSG react with elemental selenium formed in the solution, which can be demonstrated by another unstable intermediate ion identified at m/z 418 by mass spectrometry with the elemental composition of [GSS-Se](-). The reaction mechanism between GSH and sodium selenite has been proposed according to the ESI-MS, NMR and UV-vis spectrometric measurements.  相似文献   

6.
Because of the importance of glutathione (GSH) and glutathione disulfide (GSSG) in cellular signal transduction, gene regulation, redox regulation, and biochemical homeostasis, accurate determination of cellular glutathione levels is critical. Several procedures have been developed, but many suffer from overestimating GSSG or from cellular substances interfering or competing with GSH determination. Assays based on HPLC, with enzymatic reduction of GSSG by glutathione reductase and NADPH, appear to be valid but are limited in sample throughput and availability of equipment. The fluorescence probe o-phthalaldehyde (OPA, phthalic dicarboxaldehyde) reacts with GSH and has a high quantum yield, yet its use has been limited due to unidentified interfering and fluorescence-quenching substances in liver. This paper describes assay conditions under which these limitations are avoided. By using a phosphate-buffered assay at lower pH, interference with nonspecific reactants is minimal. Since enzymatic reduction is not possible due to the reaction of OPA with NAD(P)H and other stronger reducing agents, leading to an overestimation of GSSG levels, dithionite was used to reduce GSSG. High sample throughput combined with sensitive (20-pmol limit of detection) and accurate determination of GSH and GSSG using OPA is achievable with any monochromatographic spectrofluorometer. Sample preparation and storage conditions are described that return the same levels of GSH and GSSG for at least 4 weeks.  相似文献   

7.
Glutathione is a valuable tripeptide that is widely used in the pharmaceutical, food, and cosmetic industries. Intracellular glutathione exists in two forms, reduced glutathione (GSH) and oxidized glutathione (GSSG). Most of the glutathione produced by fermentation using yeast is in the GSH form because intracellular GSH concentration is higher than GSSG concentration. However, the stability of GSSG is higher than GSH, which makes GSSG more advantageous for industrial production and storage after extraction. In this study, an oxidized glutathione fermentation method using Saccharomyces cerevisiae was developed by following three metabolic engineering steps. First, over-expression of the glutathione peroxidase 3 (GPX3) gene increased the GSSG content better than over-expression of other identified peroxidase (GPX1 or GPX2) genes. Second, the increase in GSSG brought about by GPX3 over-expression was enhanced by the over-expression of the GSH1/GSH2 genes because of an increase in the total glutathione (GSH + GSSG) content. Finally, after deleting the glutathione reductase (GLR1) gene, the resulting GPX3/GSH1/GSH2 over-expressing ΔGLR1 strain yielded 7.3-fold more GSSG compared with the parental strain without a decrease in cell growth. Furthermore, use of this strain also resulted in an enhancement of up to 1.6-fold of the total glutathione content compared with the GSH1/GSH2 over-expressing strain. These results indicate that the increase in the oxidized glutathione content helps to improve the stability and total productivity of glutathione.  相似文献   

8.
This assay measures reduced (GSH), oxidized (GSSG, GSSR), and protein-bound (glutathione-protein mixed disulfides, ProSSG) glutathione in human plasma. Oxidized glutathione and ProSSG are converted to GSH in the presence of NaBH4, and, after precolumn derivatization with monobromobimane, GSH is quantitated by reversed-phase liquid chromatography and fluorescence detection. The NaBH4 concentration is optimized so that total recovery of oxidized glutathione is obtained and no interference with the formation/stability of the GSH-bimane adduct occurs. The presence of 50 microM dithioerythritol prevents reduced recovery at low concentrations of GSH, and the standard curve for GSH is linear over a wide concentration range and is super-imposed upon that obtained with GSSG. Selective determination of oxidized glutathione exploits the fact that N-ethylmaleimide (NEM) blocks free sulfhydryl groups and excess NEM is inactivated by the subsequent addition of NaBH4. To measure total glutathione including the protein-bound forms, the protein is solubilized with dimethyl sulfoxide, which is compatible with the other reagents and slightly increases the yield of the fluorescent GSH derivative. The assay is characterized by a sensitivity (less than 2 pmol) sufficiently high to detect the various forms of glutathione in plasma, by an analytical recovery of GSH and GSSG close to 100%, and by a within-day precision corresponding to a coefficient of variation of 7%. The assay was used to determine the dynamic relationships among various glutathione species in human plasma.  相似文献   

9.
Evaluation of the kinetic parameters of the various reactions involved in the determination of glutathione provided the rationale for a modification of the frequently used assay (F. Tietze, 1969, Anal. Biochem. 27, 502-522) whereby the enzymatic reaction is no longer rate limiting. At pH 6.0, the nonenzymatic thiol interchange reaction of reduced glutathione (GSH) with Ellman's reagent becomes rate limiting, and inhibition of glutathione reductase up to 50% has no influence on the accuracy of the determination. The lower level of sensitivity is 10(-10) mol glutathione with a linear response up to 5 X 10(-9) mol. For determination of glutathione disulfide, GSH is alkylated by N-ethylmaleimide (NEM), and excess NEM is removed by extraction with ethyl acetate. Since the glutathione adduct is not stable, extracted samples are kept deep-frozen prior to analysis. Using this precaution, less than 0.05% of GSSG was determined in GSH-containing samples which had been previously freed from GSSG.  相似文献   

10.
An assay for reduced and oxidized glutathione was adapted to isolated rat epididymal adipocytes in order to correlate pentose phosphate cycle activity and glutathione metabolism. In collagenase-digested adipocytes the [GSH/GSSG] molar ratio was in excess of 100. Cells incubated for 1 hr with low glucose concentrations (0.28–0.55 mm) had higher GSH contents (3.2 μg/106 cells) than in the absence of glucose (2.3 μg/106 cells). The glutathione oxidant diamide caused a dose-related decrease in intracellular GSH, an increase in GSSG released into the medium, but no detectable change in the low intracellular GSSG content. The intracellular content of GSH and amount of GSSG released into the medium were therefore taken to reflect the glutathione status of the adipocytes most closely. Addition of H2O2 to a concentration of 60 μm to adipocytes caused to decline within 5 min in GSH content, which was less severe and more rapid to recover in the presence of 1.1 mm glucose, suggesting that the concomitant stimulation of glucose C-1 oxidation induced by the peroxide in the presence of glucose provided NADPH for regeneration of GSH. Further evidence for tight coupling between adipocyte [GSH/GSSG] ratios and pentose phosphate cycle activity was that (i) lowering intracellular GSH to 35–60% of control values by agents as diverse in action as t-butyl hydroperoxide, diamide, or the sulfhydryl blocker N-ethylmaleimide resulted in optimal stimulation of glucose C-1 oxidation and fractional pentose phosphate cycle activity, and (ii) incubating adipocytes directly with 2.5 mm GSSG resulted in a slight increase in glucose C-1 oxidation and when 0.5 mm NADP+ was also added a synergistic effect on pentose phosphate cycle activity was found. On the other hand, electron acceptors such as methylene blue did not lower cellular GSH content, but did stimulate the pentose phosphate cycle, confirming a site of action independent of glutathione metabolism. The results show that (i) glucose metabolism by the pentose phosphate cycle contributes to regeneration of GSH and that (ii) glutathione metabolism either directly or via coupled changes in [NADPH/NADP+] ratios may play a significant role in short-term control of the pentose phosphate cycle.  相似文献   

11.
Mitochondrial membrane potential (DeltaPsi(m)) depolarization contributes to cell death and electrical and contractile dysfunction in the post-ischemic heart. An imbalance between mitochondrial reactive oxygen species production and scavenging was previously implicated in the activation of an inner membrane anion channel (IMAC), distinct from the permeability transition pore (PTP), as the first response to metabolic stress in cardiomyocytes. The glutathione redox couple, GSH/GSSG, oscillated in parallel with DeltaPsi(m) and the NADH/NAD(+) redox state. Here we show that depletion of reduced glutathione is an alternative trigger of synchronized mitochondrial oscillation in cardiomyocytes and that intermediate GSH/GSSG ratios cause reversible DeltaPsi(m) depolarization, although irreversible PTP activation is induced by extensive thiol oxidation. Mitochondrial dysfunction in response to diamide occurred in stages, progressing from oscillations in DeltaPsi(m) to sustained depolarization, in association with depletion of GSH. Mitochondrial oscillations were abrogated by 4'-chlorodiazepam, an IMAC inhibitor, whereas cyclosporin A was ineffective. In saponin-permeabilized cardiomyocytes, the thiol redox status was systematically clamped at GSH/GSSG ratios ranging from 300:1 to 20:1. At ratios of 150:1-100:1, DeltaPsi(m) depolarized reversibly, and a matrix-localized fluorescent marker was retained; however, decreasing the GSH/GSSG to 50:1 irreversibly depolarized DeltaPsi(m) and induced maximal rates of reactive oxygen species production, NAD(P)H oxidation, and loss of matrix constituents. Mitochondrial GSH sensitivity was altered by inhibiting either GSH uptake, the NADPH-dependent glutathione reductase, or the NADH/NADPH transhydrogenase, indicating that matrix GSH regeneration or replenishment was crucial. The results indicate that GSH/GSSG redox status governs the sequential opening of mitochondrial ion channels (IMAC before PTP) triggered by thiol oxidation in cardiomyocytes.  相似文献   

12.
S-Conjugates of glutathione influence the glutathione/glutathione disulfide (GSH/GSSG) status of hepatocytes in at least two ways, namely by inhibition of GSSG transport into the bile [Akerboom et al. (1982) FEBS Lett. 140, 73-76] and by inhibition of the enzyme GSSG reductase (EC 1.6.4.2). The interaction of GSSG reductase with a well-studied conjugate, namely S-(2,4-dinitrophenyl)-glutathione and its electrophilic precursor 1-chloro-2,4-dinitrobenzene are described. For short exposures both compounds are reversible inhibitors of the enzyme, the Ki values being 30 microM and 22 microM respectively. After prolonged incubation, 1-chloro-2,4-dinitrobenzene blocks GSSG reductase irreversibly, which emphasizes the need for rapid conjugate formation in situ. As shown by X-ray crystallography the major binding site of S-(2,4-dinitrophenyl)-glutathione in GSSG reductase overlaps the binding site of the substrate, glutathione disulfide. However, the glutathione moiety of the conjugate does not bind in the same manner as either of the glutathiones in the disulfide.  相似文献   

13.
Biological thiol compounds are classified into high-molecular-mass protein thiols and low-molecular-mass free thiols. Endogenous low-molecular-mass thiol compounds, namely, reduced glutathione (GSH) and its corresponding disulfide, glutathione disulfide (GSSG), are very important molecules that participate in a variety of physiological and pathological processes. GSH plays an essential role in protecting cells from oxidative and nitrosative stress and GSSG can be converted into the reduced form by action of glutathione reductase. Measurement of GSH and GSSG is a useful indicator of oxidative stress and disease risk. Many publications have reported successful determination of GSH and GSSG in biological samples. In this article, we review newly developed techniques, such as liquid chromatography coupled with mass spectrometry and tandem mass spectrometry, for identifying GSH bound to proteins, or for localizing GSH in bound or free forms at specific sites in organs and in cellular locations.  相似文献   

14.
Iac operon operator DNA: isolation and trimming for NMR spectroscopy   总被引:1,自引:0,他引:1  
A method for measurement of both glutathione (GSH) and glutathione disulfide (GSSG) in biological samples has been developed by using an isotachophoretic analyzer. The determination of the amount of GSH was carried out by measuring a zone length of GSH in isotachophoresis. The method gave recoveries of 92 to 106% for GSH and was quite specific for GSH. The measurement of GSSG levels was carried out by measuring differences in the length of mixed zones containing GSSG determined before and after reduction of GSSG by treatment with dithiothreitol or glutathione reductase. The method gave recoveries of 80 to 103% for GSSG. The results determined by using this method for GSH and GSSG levels in rat tissues agreed well with earlier reports.  相似文献   

15.
The addition of external GSSG at concentrations in the range 50-500 microM produces in isolated adult rat heart myocytes an increase of GSH level and only a slight increase of GSSG level. On the contrary, external GSH at the above same indicated concentrations did not change the cell glutathione pool. The pretreatment of the cells with diethylamaleate depleted the myocytes of glutathione and enhanced the GSSG-induced replenishment effect on GSH level. On the contrary, the addition of GSH did not increase the concentration of cell glutathione. The level of cell GSH in diethylmaleate-treated myocytes was not increased after 30 min of incubation with cysteine, or acetylcysteine. The GSSG induced-stimulation on GSH level was not inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. On the contrary, this stimulatory effect was inhibited by N, N-bis(2-chloroethyl)-N-nitrosourea, an inhibitor of glutathione reductase, or partially, by the remotion of glucose from the incubation medium. These results support the idea that the isolated adult rat heart myocytes are able to utilize external GSSG in order to increase the intracellular glutathione pool, probably through the reduction of the imported GSSG to GSH.  相似文献   

16.
To explore whether glutathione regulates diapause determination and termina tion in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapanse and nondiapauseegg producers, as well as those in dia pause eggs incubated at different temperatures. The activity ofthioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapauseegg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cy cle during diapause determination. Compared with the 25℃treated diapause eggs, the 5℃treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.  相似文献   

17.
A mechanistic study was performed to elucidate the biochemical events connected with the cocarcinogenic effect of sulfur dioxide (SO2). Glutathione S-sulfonate (GSSO3H), a competitive inhibitor of the glutathione S-transferases, forms in lung cells exposed in culture to sulfite, the hydrated form of SO2. Changes in glutathione status (total GSH) were also observed during a 1-h exposure. Some cells were pretreated with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to inhibit glutathione reductase. In human lung cells GSSO3H formed in a concentration-dependent manner, while glutathione (GSH) increased and glutathione disulfide (GSSG) decreased as the extracellular sulfite concentration was increased from 0 to 20 mM. The ratio of GSH/GSSG increased greater than 5-fold and the GSH/GSSO3H ratio decreased to 10 with increasing sulfite concentration. GSSO3H formed in rat lung cells exposed to sulfite, with no detectable effect on GSH and GSSG. GSSO3H also formed from cellular GSH mixed disulfides. GSSO3H formed rapidly, reaching its maximum value in 15 min. The viability of both cell types was unaffected except at 20 mM sulfite. GSSO3H incubated with human lung cells did not affect cellular viability. BCNU inhibited cellular GSSO3H reductase to the same extent as GSSG reductase. These results indicate that GSSO3H is formed in cells exposed to sulfite, and could be the active metabolite of sulfite responsible for the cocarcinogenic effect of SO2 by inhibiting conjugation of electrophiles by GSH.  相似文献   

18.
A new rapid and highly sensitive HPLC method with ortho-phthalaldehyde (OPA) pre-column derivatization has been developed for determination of reduced glutathione (GSH) and total glutathione (GSHt) in human red blood cells and cultured fibroblasts. OPA derivatives are separated on a reversed-phase HPLC column with an acetonitrile–sodium acetate gradient system and detected fluorimetrically. An internal standard (glutathione ethyl ester) is added to facilitate quantitation. Total glutathione is determined after reduction of disulfide groups with dithiothreitol; the oxidized glutathione (GSSG) concentration is calculated by subtraction of the GSH level from the GSHt level. The assay shows high sensitivity (50 fmol per injection, the lowest reported), good precision (C.V. <5.0%), an analytical recovery of GSH and GSSG close to 100%, and linearity (r>0.999). This HPLC technique is very simple and rapid. Its wide applicability and high sensitivity make it a convenient and reliable method for glutathione determination in various biological samples.  相似文献   

19.
The nature of the mechanisms underlying the age-related decline in glutathione (GSH) synthetic capacity is at present unclear. Steady-state kinetic parameters of mouse liver GCL (glutamate-cysteine ligase), the rate-limiting enzyme in GSH synthesis, and levels of hepatic GSH synthesis precursors from the trans-sulfuration pathway, such as homocysteine, cystathionine and cysteine, were compared between young and old C57BL/6 mice (6- and 24-month-old respectively). There were no agerelated differences in GCL V(max), but the apparent K(m) for its substrates, cysteine and glutamate, was higher in the old mice compared with the young mice (approximately 800 compared with approximately 300 microM, and approximately 710 compared with 450 microM, P<0.05 for cysteine and glutamate in young and old mice respectively). Amounts of cysteine, cystathionine and Cys-Gly increased with age by 91, 24 and 28% respectively. Glutathione (GSH) levels remained unchanged with age, whereas GSSG content showed an 84% increase, suggesting a significant pro-oxidizing shift in the 2GSH/GSSG ratio. The amount of the toxic trans-sulfuration/glutathione biosynthetic pathway intermediate, homocysteine, was 154% higher (P<0.005) in the liver of old mice compared with young mice. The conversion of homocysteine into cystathionine, a rate-limiting step in trans-sulfuration catalysed by cystathionine beta-synthase, was comparatively less efficient in the old mice, as indicated by cystathionine/homocysteine ratios. Incubation of tissue homogenates with physiological concentrations of homocysteine caused an up to 4.4-fold increase in the apparent K(m) of GCL for its glutamate substrate, but had no effect on V(max). The results suggest that perturbation of the catalytic efficiency of GCL and accumulation of homocysteine from the trans-sulfuration pathway may adversely affect de novo GSH synthesis during aging.  相似文献   

20.
This paper extends the previous study for systems which control intracellular oxidative events in muscle and describes procedures suitable to assay glutathione peroxidase (GSHPx), glutathione reductase (GR), and total glutathione (GSH + GSSG) after fiber typing of individual muscle fibers. In human skeletal muscle, both GR and GSHPx activities were relatively low when compared to those of other tissue. No difference was found among fiber types (I, IIA, and IIB) with regard to GR activity, but in contrast GSHPx activity was significantly lower in type IIB fibers than in the other types. These results suggest that type IIB fibers may have a reduced ability to cope with hydroperoxides generated during oxidative stress, which, in turn, could lead to increased damage to membrane structures by lipid peroxidation or oxidation of sensitive intracellular thiol (-SH) enzymes by hydrogen peroxide. The Km of skeletal muscle GR for GSSG was 27 microM and for NADPH was 22 microM. If one assumes approximately 95% of total glutathione is present in the reduced state, then GSSG concentration would be of the order of 0.3 mmol/kg and under these conditions skeletal muscle GR would be efficient in all muscle fiber types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号