首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key element to a successful Markov chain Monte Carlo (MCMC) inference is the programming and run performance of the Markov chain. However, the explicit use of quality assessments of the MCMC simulations-convergence diagnostics-in phylogenetics is still uncommon. Here, we present a simple tool that uses the output from MCMC simulations and visualizes a number of properties of primary interest in a Bayesian phylogenetic analysis, such as convergence rates of posterior split probabilities and branch lengths. Graphical exploration of the output from phylogenetic MCMC simulations gives intuitive and often crucial information on the success and reliability of the analysis. The tool presented here complements convergence diagnostics already available in other software packages primarily designed for other applications of MCMC. Importantly, the common practice of using trace-plots of a single parameter or summary statistic, such as the likelihood score of sampled trees, can be misleading for assessing the success of a phylogenetic MCMC simulation. AVAILABILITY: The program is available as source under the GNU General Public License and as a web application at http://ceb.scs.fsu.edu/awty.  相似文献   

2.
Bayesian phylogenetics with BEAUti and the BEAST 1.7   总被引:7,自引:0,他引:7  
Computational evolutionary biology, statistical phylogenetics and coalescent-based population genetics are becoming increasingly central to the analysis and understanding of molecular sequence data. We present the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package version 1.7, which implements a family of Markov chain Monte Carlo (MCMC) algorithms for Bayesian phylogenetic inference, divergence time dating, coalescent analysis, phylogeography and related molecular evolutionary analyses. This package includes an enhanced graphical user interface program called Bayesian Evolutionary Analysis Utility (BEAUti) that enables access to advanced models for molecular sequence and phenotypic trait evolution that were previously available to developers only. The package also provides new tools for visualizing and summarizing multispecies coalescent and phylogeographic analyses. BEAUti and BEAST 1.7 are open source under the GNU lesser general public license and available at http://beast-mcmc.googlecode.com and http://beast.bio.ed.ac.uk.  相似文献   

3.
Taxon sampling and seed plant phylogeny   总被引:2,自引:0,他引:2  
We investigated the effects of taxon sampling on phylogenetic inference by exchanging terminals in two sizes of rbcL matrices for seed plants, applying parsimony and bayesian analyses to ten 38‐taxon matrices and ten 80‐taxon matrices. In comparing tree topologies we concentrated on the position of the Gnetales, an important group whose placement has long been disputed. With either method, trees obtained from different taxon samples could be mutually contradictory and even disagree on groups that seemed strongly supported. Adding terminals improved the consistency of results for unweighted parsimony, but not for parsimony with third positions excluded and not for bayesian analysis, particularly when the general time‐reversible model was employed. This suggests that attempting to resolve deep relationships using only a few taxa can lead to spurious conclusions, groupings unlikely to be repeatable with different taxon samplings or larger data sets. The effect of taxon sampling has not generally been recognized, and phylogenetic studies of seed plants have often been based on few taxa. Such insufficient sampling may help explain the variety of phylogenetic hypotheses for seed plants proposed in recent years. We recommend that restricted data sets such as single‐gene subsets of multigene studies should be reanalyzed with alternative selections of terminals to assess topological consistency.  相似文献   

4.
Bayesian phylogenetics has gained substantial popularity in the last decade, with most implementations relying on Markov chain Monte Carlo (MCMC). The computational demands of MCMC mean that remote servers are increasingly used. We present Beastiary, a package for real-time and remote inspection of log files generated by MCMC analyses. Beastiary is an easily deployed web-app that can be used to summarize and visualize the output of many popular software packages including BEAST, BEAST2, RevBayes, and MrBayes via a web browser. We describe the design and implementation of Beastiary and some typical use-cases, with a focus on real-time remote monitoring.  相似文献   

5.
6.
Reconstructing a tree of life by inferring evolutionary history is an important focus of evolutionary biology. Phylogenetic reconstructions also provide useful information for a range of scientific disciplines such as botany, zoology, phylogeography, archaeology and biological anthropology. Until the development of protein and DNA sequencing techniques in the 1960s and 1970s, phylogenetic reconstructions were based on fossil records and comparative morphological/physiological analyses. Since then, progress in molecular phylogenetics has compensated for some of the shortcomings of phenotype-based comparisons. Comparisons at the molecular level increase the accuracy of phylogenetic inference because there is no environmental influence on DNA/peptide sequences and evaluation of sequence similarity is not subjective. While the number of morphological/physiological characters that are sufficiently conserved for phylogenetic inference is limited, molecular data provide a large number of datapoints and enable comparisons from diverse taxa. Over the last 20 years, developments in molecular phylogenetics have greatly contributed to our understanding of plant evolutionary relationships. Regions in the plant nuclear and organellar genomes that are optimal for phylogenetic inference have been determined and recent advances in DNA sequencing techniques have enabled comparisons at the whole genome level. Sequences from the nuclear and organellar genomes of thousands of plant species are readily available in public databases, enabling researchers without access to molecular biology tools to investigate phylogenetic relationships by sequence comparisons using the appropriate nucleotide substitution models and tree building algorithms. In the present review, the statistical models and algorithms used to reconstruct phylogenetic trees are introduced and advances in the exploration and utilization of plant genomes for molecular phylogenetic analyses are discussed.  相似文献   

7.
Reconstructing evolutionary relationships using Bayesian inference has become increasingly popular due to the ability of Bayesian inference to handle complex models of evolution. In this review we concentrate on inference of recombination events between strains of viruses when these events are sporadic, ie rare relative to point mutations. Bayesian inference is especially attractive in the detection of recombination events because it allows for simultaneous inferences about the presence, number and location of crossover points and the identification of parental sequences. Current frequentist recombination identification falls into a sequential testing trap. The most likely parental sequences and crossover points are identified using the data and then the certainty of recombination is assessed conditional on this identification. After briefly outlining basic phylogenetic models, Bayesian inference and Markov chain Monte Carlo (MCMC) computation, we summarise three different approaches to recombination detection and discuss current challenges in applying Bayesian phylogenetic inference of recombination.  相似文献   

8.
We propose a new Markov Chain Monte Carlo (MCMC) sampling mechanism for Bayesian phylogenetic inference. This method, which we call conjugate Gibbs, relies on analytical conjugacy properties, and is based on an alternation between data augmentation and Gibbs sampling. The data augmentation step consists in sampling a detailed substitution history for each site, and across the whole tree, given the current value of the model parameters. Provided convenient priors are used, the parameters of the model can then be directly updated by a Gibbs sampling procedure, conditional on the current substitution history. Alternating between these two sampling steps yields a MCMC device whose equilibrium distribution is the posterior probability density of interest. We show, on real examples, that this conjugate Gibbs method leads to a significant improvement of the mixing behavior of the MCMC. In all cases, the decorrelation times of the resulting chains are smaller than those obtained by standard Metropolis Hastings procedures by at least one order of magnitude. The method is particularly well suited to heterogeneous models, i.e. assuming site-specific random variables. In particular, the conjugate Gibbs formalism allows one to propose efficient implementations of complex models, for instance assuming site-specific substitution processes, that would not be accessible to standard MCMC methods.  相似文献   

9.
A recent article published in Cladistics is critical of a number of heuristic methods for phylogenetic inference based on parsimony scores. One of my papers is among those criticized, and I would appreciate the opportunity to make a public response. The specific criticism is that I have re‐invented an algorithm for economizing parsimony calculations on trees that differ by a subtree pruning and regrafting (SPR) rearrangement. This criticism is justified, and I apologize for incorrectly claiming originality for my presentation of this algorithm. However, I would like to clarify the intent of my paper, if I can do so without detracting from the sincerity of my apology. My paper is not about that algorithm, nor even primarily about parsimony. Rather, it is about a novel strategy for Markov chain Monte Carlo (MCMC) sampling in a state space consisting of trees. The sampler involves drawing from conditional distributions over sets of trees: a Gibbs‐like strategy that had not previously been used to sample tree‐space. I would like to see this technique incorporated into MCMC samplers for phylogenetics, as it may have advantages over commonly used Metropolis‐like strategies. I have recently used it to sample phylogenies of a biological invasion, and I am finding many applications for it in agent‐based Bayesian ecological modelling. It is thus my contention that my 2005 paper retains substantial value.  相似文献   

10.
In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations. The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity.  相似文献   

11.
The inference of phylogenetic hypotheses from landmark data has been questioned during the last two decades. Besides theoretical concerns, one of the limitations pointed out for the use of landmark data in phylogenetics is its (supposed) lack of information relevant to the inference of phylogenetic relationships. However, empirical analyses are scarce; there exists no previous study that systematically evaluates the phylogenetic performance of landmark data in a series of data sets. In the present study, we analysed 41 published data sets in order to assess the correspondence between the phylogenetic trees derived from landmark data and those obtained with alternative and independent sources of evidence, and determined the main factors that might affect this inference. The data sets presented a variable number of terminals (5–200) and configurations (1–14), belonging to different taxonomic groups. The results showed that for most of the data sets analysed, the trees derived from landmark data presented a low correspondence with the reference phylogenies. The results were similar irrespective of the phylogenetic method considered. Complementary analyses strongly suggested that the limited amount of evidence included in each data set (one or a few landmark configurations) is the main cause for that low correspondence: the phylogenetic analysis of eight data sets that presented three or more configurations clearly showed that the inclusion of several landmark configurations improves the results. In addition, the analyses indicated that the inclusion of landmark data from different configurations is more important than the inclusion of more landmarks from the same configuration. Based on the results presented here, we consider that the poor results previously obtained in phylogenetic analyses based on landmark data were not caused by methodological limitations, but rather due to the limited amount of evidence included in the data sets.  相似文献   

12.
We developed a software tool (SlidingBayes) for recombination analysis based on Bayesian phylogenetic inference. Sliding-Bayes provides a powerful approach for detecting potential recombination, especially between highly divergent sequences and complex HIV-1 recombinants for which simpler methods like neighbor joining (NJ) may be less powerful. SlidingBayes guides Markov Chain Monte Carlo (MCMC) sampling performed by MrBayes in a sliding window across the alignment (Bayesian scanning). The tool can be used for nucleotide and amino acid sequences and combines all the modeling possibilities of MrBayes with the ability to plot the posterior probability support for clustering of various combinations of taxa.  相似文献   

13.
Methods for Bayesian inference of phylogeny using DNA sequences based on Markov chain Monte Carlo (MCMC) techniques allow the incorporation of arbitrarily complex models of the DNA substitution process, and other aspects of evolution. This has increased the realism of models, potentially improving the accuracy of the methods, and is largely responsible for their recent popularity. Another consequence of the increased complexity of models in Bayesian phylogenetics is that these models have, in several cases, become overparameterized. In such cases, some parameters of the model are not identifiable; different combinations of nonidentifiable parameters lead to the same likelihood, making it impossible to decide among the potential parameter values based on the data. Overparameterized models can also slow the rate of convergence of MCMC algorithms due to large negative correlations among parameters in the posterior probability distribution. Functions of parameters can sometimes be found, in overparameterized models, that are identifiable, and inferences based on these functions are legitimate. Examples are presented of overparameterized models that have been proposed in the context of several Bayesian methods for inferring the relative ages of nodes in a phylogeny when the substitution rate evolves over time.  相似文献   

14.
The increasing ability to extract and sequence DNA from noncontemporaneous tissue offers biologists the opportunity to analyse ancient DNA (aDNA) together with modern DNA (mDNA) to address the taxonomy of extinct species, evolutionary origins, historical phylogeography and biogeography. Perhaps more exciting are recent developments in coalescence-based Bayesian inference that offer the potential to use temporal information from aDNA and mDNA for the estimation of substitution rates and divergence dates as an alternative to fossil and geological calibration. This comes at a time of growing interest in the possibility of time dependency for molecular rate estimates. In this study, we provide a critical assessment of Bayesian Markov chain Monte Carlo (MCMC) analysis for the estimation of substitution rate using simulated samples of aDNA and mDNA. We conclude that the current models and priors employed in Bayesian MCMC analysis of heterochronous mtDNA are susceptible to an upward bias in the estimation of substitution rates because of model misspecification when the data come from populations with less than simple demographic histories, including sudden short-lived population bottlenecks or pronounced population structure. However, when model misspecification is only mild, then the 95% highest posterior density intervals provide adequate frequentist coverage of the true rates.  相似文献   

15.
The evolutionary relationships of extant great apes and humans have been largely resolved by molecular studies, yet morphology-based phylogenetic analyses continue to provide conflicting results. In order to further investigate this discrepancy we present bootstrap clade support of morphological data based on two quantitative datasets, one dataset consisting of linear measurements of the whole skull from 5 hominoid genera and the second dataset consisting of 3D landmark data from the temporal bone of 5 hominoid genera, including 11 sub-species. Using similar protocols for both datasets, we were able to 1) compare distance-based phylogenetic methods to cladistic parsimony of quantitative data converted into discrete character states, 2) vary outgroup choice to observe its effect on phylogenetic inference, and 3) analyse male and female data separately to observe the effect of sexual dimorphism on phylogenies. Phylogenetic analysis was sensitive to methodological decisions, particularly outgroup selection, where designation of Pongo as an outgroup and removal of Hylobates resulted in greater congruence with the proposed molecular phylogeny. The performance of distance-based methods also justifies their use in phylogenetic analysis of morphological data. It is clear from our analyses that hominoid phylogenetics ought not to be used as an example of conflict between the morphological and molecular, but as an example of how outgroup and methodological choices can affect the outcome of phylogenetic analysis.  相似文献   

16.
We tested whether it is beneficial for the accuracy of phylogenetic inference to sample characters that are evolving under different sets of parameters, using both Bayesian MCMC (Markov chain Monte Carlo) and parsimony approaches. We examined differential rates of evolution among characters, differential character-state frequencies and character-state space, and differential relative branch lengths among characters. We also compared the relative performance of parsimony and Bayesian analyses by progressively incorporating more of these heterogeneous parameters and progressively increasing the severity of this heterogeneity. Bayesian analyses performed better than parsimony when heterogeneous simulation parameters were incorporated into the substitution model. However, parsimony outperformed Bayesian MCMC when heterogeneous simulation parameters were not incorporated into the Bayesian substitution model. The higher the rate of evolution simulated, the better parsimony performed relative to Bayesian analyses. Bayesian and parsimony analyses converged in their performance as the number of simulated heterogeneous model parameters increased. Up to a point, rate heterogeneity among sites was generally advantageous for phylogenetic inference using both approaches. In contrast, branch-length heterogeneity was generally disadvantageous for phylogenetic inference using both parsimony and Bayesian approaches. Parsimony was found to be more conservative than Bayesian analyses, in that it resolved fewer incorrect clades.
© The Willi Hennig Society 2006.  相似文献   

17.
Parasitological research is often contingent on the knowledge of the phylogeny/genealogy of the studied group. Although molecular phylogenetics has proved to be a powerful tool in such investigations, its application in the traditional fashion, based on a tree inference from the primary nucleotide sequences may, in many cases, be insufficient or even improper. These limitations are due to a number of factors, such as a scarcity/ambiguity of phylogenetic information in the sequences, an intricacy of gene relationships at low phylogenetic levels, or a lack of criteria when deciding among several competing coevolutionary scenarios. With respect to the importance of a precise and reliable phylogenetic background in many biological studies, attempts are being made to extend molecular phylogenetics with a variety of new data sources and methodologies. In this review, selected approaches potentially applicable to parasitological research are presented and their advantages as well as drawbacks are discussed. These issues include the usage of idiosyncratic markers (unique features with presumably low probability of homoplasy), such as insertion of mobile elements, gene rearrangements and secondary structure features; the problem of ancestral polymorphism and reticulate relationships at low phylogenetic levels; and the utility of a molecular clock to facilitate discrimination among alternative scenarios in host-parasite coevolution.  相似文献   

18.
19.
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation.  相似文献   

20.
We defend and expand on our earlier proposal for an inclusive philosophical framework for phylogenetics, based on an interpretation of Popperian corroboration that is decoupled from the popular falsificationist interpretation of Popperian philosophy. Any phylogenetic inference method can provide Popperian "evidence" or "test statements" based on the method's goodness-of-fit values for different tree hypotheses. Corroboration, or the severity of that test, requires that the evidence is improbable without the hypothesis, given only background knowledge that includes elements of chance. This framework contrasts with attempted Popperian justifications for cladistic parsimony--in which evidence is the data, background knowledge is restricted to descent with modification, and "corroboration," as a by-product of nonfalsification, is to be measured by cladistic parsimony. Recognition that cladistic "corroboration" reflects only goodness-of-fit, not corroboration/severity, makes it clear that standard cladistic prohibitions, such as restrictions on the evolutionary models to be included in "background knowledge," have no philosophical status. The capacity to assess Popperian corroboration neither justifies nor excludes any phylogenetic method, but it does provide a framework in phylogenetics for learning from errors--cases where apparent good evidence is probable even without the hypothesis. We explore these issues in the context of corroboration assessments applied to likelihood methods and to a new form of parsimony. These different forms of evidence and corroboration assessment point also to a new way to combine evidence--not at the level of overall fit, but at the level of overall corroboration/severity. We conclude that progress in an inclusive phylogenetics will be well served by the rejection of cladistic philosophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号