首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Minichromosome maintenance (MCM) proteins are essential eukaryotic DNA replication factors. The binding of MCMs to chromatin oscillates in conjunction with progress through the mitotic cell cycle. This oscillation is thought to play an important role in coupling DNA replication to mitosis and limiting chromosome duplication to once per cell cycle. The coupling of DNA replication to mitosis is absent in Drosophila endoreplication cycles (endocycles), during which discrete rounds of chromosome duplication occur without intervening mitoses. We examined the behavior of MCM proteins in endoreplicating larval salivary glands, to determine whether oscillation of MCM–chromosome localization occurs in conjunction with passage through an endocycle S phase. We found that MCMs in polytene nuclei exist in two states: associated with or dissociated from chromosomes. We demonstrate that cyclin E can drive chromosome association of DmMCM2 and that DNA synthesis erases this association. We conclude that mitosis is not required for oscillations in chromosome binding of MCMs and propose that cycles of MCM–chromosome association normally occur in endocycles. These results are discussed in a model in which the cycle of MCM–chromosome associations is uncoupled from mitosis because of the distinctive program of cyclin expression in endocycles.  相似文献   

2.
Differentiation of trophoblast giant cells in the rodent placenta is accompanied by exit from the mitotic cell cycle and onset of endoreduplication. Commitment to giant cell differentiation is under developmental control, involving down-regulation of Id1 and Id2, concomitant with up-regulation of the basic helix-loop-helix factor Hxt and acquisition of increased adhesiveness. Endoreduplication disrupts the alternation of DNA synthesis and mitosis that maintains euploid DNA content during proliferation. To determine how the mammalian endocycle is regulated, we examined the expression of the cyclins and cyclin-dependent kinases during the transition from replication to endoreduplication in the Rcho-1 rat choriocarcinoma cell line. We cultured these cells under conditions that gave relatively synchronous endoreduplication. This allowed us to study the events that occur during the transition from the mitotic cycle to the first endocycle. With giant cell differentiation, the cells switched cyclin D isoform expression from D3 to D1 and altered several checkpoint functions, acquiring a relative insensitivity to DNA-damaging agents and a coincident serum independence. The initiation of S phase during endocycles appeared to involve cycles of synthesis of cyclins E and A, and termination of S was associated with abrupt loss of cyclin A and E. Both cyclins were absent from gap phase cells, suggesting that their degradation may be necessary to allow reinitiation of the endocycle. The arrest of the mitotic cycle at the onset of endoreduplication was associated with a failure to assemble cyclin B/p34cdk1 complexes during the first endocycle. In subsequent endocycles, cyclin B expression was suppressed. Together these data suggest several points at which cell cycle regulation could be targeted to shift cells from a mitotic to an endoreduplicative cycle.  相似文献   

3.
4.
The endocycle is a developmentally programmed variant cell cycle in which cells undergo repeated rounds of DNA replication with no intervening mitosis. In Drosophila, the endocycle is driven by the oscillations of Cyclin E/Cdk2 activity. How the periodicity of Cyclin E/Cdk2 activity is achieved during endocycles is poorly understood. Here, we demonstrate that the p21(cip1)/p27(kip1)/p57(kip2)-like cyclin-dependent kinase inhibitor (CKI), Dacapo (Dap), promotes replication licensing during Drosophila endocycles by reinforcing low Cdk activity during the endocycle Gap-phase. In dap mutants, cells in the endocycle have reduced levels of the licensing factor Double Parked/Cdt1 (Dup/Cdt1), as well as decreased levels of chromatin-bound minichromosome maintenance (MCM2-7) complex. Moreover, mutations in dup/cdt1 dominantly enhance the dap phenotype in several polyploid cell types. Consistent with a reduced ability to complete genomic replication, dap mutants accumulate increased levels of DNA damage during the endocycle S-phase. Finally, genetic interaction studies suggest that dap functions to promote replication licensing in a subset of Drosophila mitotic cycles.  相似文献   

5.
6.
When mitosis is bypassed, as in some cancer cells or in natural endocycles, sister chromosomes remain paired and produce four-stranded diplochromosomes or polytene chromosomes. Cyclin/Cdk1 inactivation blocks entry into mitosis and can reset G2 cells to G1, allowing another round of replication. Reciprocally, persistent expression of Cyclin A/Cdk1 or Cyclin E/Cdk2 blocks Drosophila endocycles. Inactivation of Cyclin A/Cdk1 by mutation or overexpression of the Cyclin/Cdk1 inhibitor, Roughex (Rux), converts the 16(th) embryonic mitotic cycle to an endocycle; however, we show that Rux expression fails to convert earlier cell cycles unless Cyclin E is also downregulated. Following induction of a Rux transgene in Cyclin E mutant embryos during G2 of cell cycle 14 (G2(14)), Cyclins A, B, and B3 disappeared and cells reentered S phase. This rereplication produced diplochromosomes that segregated abnormally at a subsequent mitosis. Thus, like the yeast CKIs Rum1 and Sic1, Drosophila Rux can reset G2 cells to G1. The observed cyclin destruction suggests that cell cycle resetting by Rux was associated with activation of the anaphase-promoting complex (APC), while the presence of diplochromosomes implies that this activation of APC outside of mitosis was not sufficient to trigger sister disjunction.  相似文献   

7.
The contributions that control of cell proliferation and cell growth make to developmental regulation of organ and body size remain poorly explored, particularly with respect to endocycles in polyploid tissues. The epithelium of the marine chordate Oikopleura dioica is composed of a fixed number of cells grouped in territories according to gene-specific expression and nuclear sizes and shapes. As the animal grows 10-fold during the life cycle, epithelial cells increase in size differentially as a function of their spatial position. We show that this cellular pattern reflected differences in ploidy levels ranging from 34 to 1,300 C. The diverse ploidy levels in defined cellular fields resulted both from different timing of entry into endocycles and from cell-specific regulation of endocycle lengths. Throughout the life cycle, differential cell size and ploidy increases were accompanied by field-specific profiles of progressive reductions in G-phase duration. Endocycles were asynchronous among cells of a given epithelial territory, but at the resolution of individual cells, both DNA replication timing and ploidy levels were bilaterally symmetric. The transparent, accessible, oikoplastic epithelium is a model of choice for the study of endoreduplication in the context of pattern formation and growth.  相似文献   

8.
ABSTRACT: INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal /stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Tribolium is necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflect the ancestral function of Notch-signaling in insect oogenesis. The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.  相似文献   

9.
《Fly》2013,7(2):173-175
The endocycle is a developmentally specialized cell cycle that lacks M phase and consists of only S and G phases. Endoreplicating cells acquire high ploidies by multiple rounds of replication without cell divisions in order to increase protein synthesis to support growth and development of the organism. Endoreplication occurs in developmentally specialized cell types after they terminally differentiate. These cells include: ovarian nurse cells and follicle cells, most of laval tissues in flies and placenta giant trophoblasts and megakaryocytes in mammals.

To date studies of endoreplication have mainly focused on two aspects: Cyclin-dependent kinase (CDK)-mediated controls to license and re-license replication origins in the absence of mitosis, and development or differentiation signaling pathways that mediate transition from mitotic replication to endoreplication. The replication initiation machinery itself has not been much studied, partly because it has been generally considered to consist of the same set of factors used in mitotic cycle.

Recently we reported a loss-of-function analysis of the Drosophila orc1 gene, which revealed that the Origin Recognition Complex (ORC) is dispensable for endoreplication. This finding is surprising and rather provocative as it runs against the dogma and is expected to stimulate discussion and interest in the identification of molecular mechanisms of the initiation of endoreplication. What follows is a highly speculative view on how endoreplication occurs in the absence of the ORC and what advantage ORC-independent replication brings to the organism.  相似文献   

10.
The endocycle constitutes an effective strategy for cell growth during development. In contrast to the mitotic cycle, it consists of multiple S-phases with no intervening mitosis and lacks a checkpoint ensuring the replication of the entire genome. Here, we report an essential requirement of chromatin assembly factor-1 (CAF-1) for Drosophila larval endocycles. This complex promotes histone H3–H4 deposition onto newly synthesised DNA in vitro. In metazoans, the depletion of its large subunit leads to the rapid accumulation of cells in S-phase. However, whether this slower S-phase progression results from the activation of cell cycle checkpoints or whether it reflects a more direct requirement of CAF-1 for efficient replication in vivo is still debated. Here, we show that, strikingly, Drosophila larval endocycling cells depleted for the CAF-1 large subunit exhibit normal dynamics of progression through endocycles, although accumulating defects, such as perturbation of nucleosomal organisation, reduction of the replication efficiency of euchromatic DNA and accumulation of DNA damage. Given that the endocycle lacks a checkpoint ensuring the replication of the entire genome, the biological context of Drosophila larval development offered a unique opportunity to highlight the requirement of CAF-1 for chromatin organisation and efficient replication processes in vivo, independently of checkpoint activation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The shattered1 (shtd1) mutation disrupts Drosophila compound eye structure. In this report, we show that the shtd1 eye defects are due to a failure to establish and maintain G1 arrest in the morphogenetic furrow (MF) and a defect in progression through mitosis. The observed cell cycle defects were correlated with an accumulation of cyclin A (CycA) and String (Stg) proteins near the MF. Interestingly, the failure to maintain G1 arrest in the MF led to the specification of R8 photoreceptor cells that undergo mitosis, generating R8 doublets in shtd1 mutant eye discs. We demonstrate that shtd encodes Apc1, the largest subunit of the anaphase-promoting complex/cyclosome (APC/C). Furthermore, we show that reducing the dosage of either CycA or stg suppressed the shtd1 phenotype. While reducing the dosage of CycA is more effective in suppressing the premature S phase entry in the MF, reducing the dosage of stg is more effective in suppressing the progression through mitosis defect. These results indicate the importance of not only G1 arrest in the MF but also appropriate progression through mitosis for normal eye development during photoreceptor differentiation.  相似文献   

12.
《Biophysical journal》2021,120(19):4242-4251
Problems with networks of coupled oscillators arise in multiple contexts, commonly leading to the question about the dependence of network dynamics on network structure. Previous work has addressed this question in Drosophila oogenesis, in which stable cytoplasmic bridges connect the future oocyte to the supporting nurse cells that supply the oocyte with molecules and organelles needed for its development. To increase their biosynthetic capacity, nurse cells enter the endoreplication program, a special form of the cell cycle formed by the iterated repetition of growth and synthesis phases without mitosis. Recent studies have revealed that the oocyte orchestrates nurse cell endoreplication cycles, based on retrograde (oocyte to nurse cells) transport of a cell cycle inhibitor produced by the nurse cells and localized to the oocyte. Furthermore, the joint dynamics of endocycles has been proposed to depend on the intercellular connectivity within the oocyte-nurse cell cluster. We use a computational model to argue that this connectivity guides, but does not uniquely determine the collective dynamics and identify several oscillatory regimes, depending on the timescale of intercellular transport. Our results provide insights into collective dynamics of coupled cell cycles and motivate future quantitative studies of intercellular communication in the germline cell clusters.  相似文献   

13.
Epithelial invagination is necessary for formation of many tubular organs, one of which is the Drosophila embryonic salivary gland. We show that actin reorganization and control of endocycle entry are crucial for normal invagination of the salivary placodes. Embryos mutant for Tec29, the Drosophila Tec family tyrosine kinase, showed delayed invagination of the salivary placodes. This invagination delay was partly the result of an accumulation of G-actin in the salivary placodes, indicating that Tec29 is necessary for maintaining the equilibrium between G- and F-actin during invagination of the salivary placodes. Furthermore, normal invagination of the salivary placodes appears to require the proper timing of the endocycle in these cells; Tec29 must delay DNA endoreplication in the salivary placode cells until they have invaginated into the embryo. Taken together, these results show that Tec29 regulates both the actin cytoskeleton and the cell cycle to facilitate the morphogenesis of the embryonic salivary glands. We suggest that apical constriction of the actin cytoskeleton may provide a temporal cue ensuring that endoreplication does not begin until the cells have finished invagination.  相似文献   

14.
15.
The developmental signals that regulate the switch from genome-wide DNA replication to site-specific amplification remain largely unknown. Drosophila melanogaster epithelial follicle cells, which begin synchronized chorion gene amplification after three rounds of endocycle, provide an excellent model for study of the endocycle/gene amplification (E/A) switch. Here, we report that down-regulation of Notch signaling and activation of ecdysone receptor (EcR) are required for the E/A switch in these cells. Extended Notch activity suppresses EcR activation and prevents exit from the endocycle. Tramtrack (Ttk), a zinc-finger protein essential for the switch, is regulated negatively by Notch and positively by EcR. Ttk overexpression stops endoreplication prematurely and alleviates the endocycle exit defect caused by extended Notch activity or removal of EcR function. Our results reveal a developmental pathway that includes down-regulation of Notch, activation of the EcR, up-regulation of Ttk to execute the E/A switch, and, for the first time, the genetic interaction between Notch and ecdysone signaling in regulation of cell cycle programs and differentiation.  相似文献   

16.
During Drosophila mid-oogenesis, follicular epithelial cells switch from the mitotic cycle to the specialized endocycle in which the M phase is skipped. The switch, along with cell differentiation in follicle cells, is induced by Notch signaling. We show that the homeodomain gene cut functions as a linker between Notch and genes that are involved in cell-cycle progression. Cut was expressed in proliferating follicle cells but not in cells in the endocycle. Downregulation of Cut expression was controlled by the Notch pathway and was essential for follicle cells to differentiate and to enter the endocycle properly. cut-mutant follicle cells entered the endocycle and differentiated prematurely in a cell-autonomous manner. By contrast, prolonged expression of Cut caused defects in the mitotic cycle/endocycle switch. These cells continued to express an essential mitotic cyclin, Cyclin A, which is normally degraded by the Fizzy-related-APC/C ubiquitin proteosome system during the endocycle. Cut promoted Cyclin A expression by negatively regulating Fizzy-related. Our data suggest that Cut functions in regulating both cell differentiation and the cell cycle, and that downregulation of Cut by Notch contributes to the mitotic cycle/endocycle switch and cell differentiation in follicle cells.  相似文献   

17.
Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.  相似文献   

18.
In animals, cyclin-dependent kinase inhibitors (CKIs) are important regulators of cell cycle progression. Recently, putative CKIs were also identified in plants, and in previous studies, Arabidopsis thaliana plants misexpressing CKIs were found to have reduced endoreplication levels and decreased numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act in a concentration-dependent manner and have an important function in cell proliferation as well as in cell cycle exit and in turning from a mitotic to an endoreplicating cell cycle mode. Endoreplication is usually associated with terminal differentiation; we observed, however, that cell fate specification proceeded independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells. On the one hand, this challenges plant cell cycle control with keeping CKIs locally controlled, and on the other hand this provides a possibility of linking cell cycle control in single cells with the supracellular organization of a tissue or an organ.  相似文献   

19.
During Drosophila oogenesis, Notch function regulates the transition from mitotic cell cycle to endocycle in follicle cells at stage 6. Loss of either Notch function or its ligand Delta (Dl) disrupts the normal transition; this disruption causes mitotic cycling to continue and leads to an overproliferation phenotype. In this context, the only known cell cycle component that responds to the Notch pathway is String/Cdc25 (Stg), a G2/M cell cycle regulator. We found that prolonged expression of string is not sufficient to keep cells efficiently in mitotic cell cycle past stage 6, suggesting that Notch also regulates other cell cycle components in the transition. By using an expression screen, we found such a component: Fizzy-related/Hec1/Cdh1 (Fzr), a WD40 repeat protein. Fzr regulates the anaphase-promoting complex/cyclosome (APC/C) and is expressed at the mitotic-to-endocycle transition in a Notch-dependent manner. Mutant clones of Fzr revealed that Fzr is dispensable for mitosis but essential for endocycles. Unlike in Notch clones, in Fzr mutant cells mitotic markers are absent past stage 6. Only a combined reduction of Fzr and ectopic Stg expression prolongs mitotic cycles in follicle cells, suggesting that these two cell cycle regulators, Fzr and Stg, are important mediators of the Notch pathway in the mitotic-to-endocycle transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号